[1] NIKOLOVA E,JECHEVA V.Some similarity coefficients and application of data mining techniques to the anomaly-based IDS[J].Telecommunication Systems,2012,50(2):127-135.
[2] XIAO L,CHEN Y,CHANG C K.Bayesian model averaging of Bayesian network classifiers for intrusion detection[C]//IEEE 38th Computer Software and Applications Conference Workshops,2014.
[3] JING X Y,BI Y,DENG H.An innovative two-stage fuzzy kNN-DST classifier for unknown intrusion detection[J].International Arab Journal of Information Technology,2016,13(4):359-366.
[4] AHMIM A,MAGLARAS L,FERRAG M A,et al.A novel hierarchical intrusion detection system based on decision tree and rules-based models[C]//2019 15th International Conference on Distributed Computing in Sensor Systems,2019.
[5] OHKI T,GUPTA V,NISHIGAKI M.Efficient spoofing attack detection against unknown sample using end-to-end anomaly detection[C]//2019 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference,2019.
[6] 张若楠,李红辉,张骏温.一种融合改进Kmeans和KNN的网络入侵检测方法[C]//中国计算机用户协会网络应用分会2018年第二十二届网络新技术与应用年会论文集,2018.
ZHANG R N,LI H H,ZHANG J W.Hybrid improved Kmeans with improved KNN for network intrusion detection algorithm[C]//Proceedings of the 22nd Annual Conference of New Network Technologies and Applications in 2018 of the Network Application Branch of China Computer Users Association,2018.
[7] 任家东,刘新倩,王倩,等.基于KNN离群点检测和随机森林的多层入侵检测方法[J].计算机研究与发展,2019,56(3):566-575.
REN J D,LIU X Q,WANG Q,et al.An multi-level intrusion detection method based on KNN outlier detection and random forests[J].Journal of Computer Research and Development,2019,56(3):566-575.
[8] 刘新倩,单纯,任家东,等.基于流量异常分析多维优化的入侵检测方法[J].信息安全学报,2019(1):14-26.
LIU X Q,SHAN C,REN J D,et al.An intrusion detection method based on multi-dimensional optimization of traffic anomaly analysis[J].Journal of Cyber Security,2019(1):14-26.
[9] 郭旭东,李小敏,敬如雪,等.基于改进的稀疏去噪自编码器的入侵检测[J].计算机应用,2019,39(3):769-773.
GUO X D,LI X M,JING R X,et al.Intrusion detection based on improved sparse denoising autoencoder[J].Journal of Computer Applications,2019,39(3):769-773.
[10] QU F,ZHANG J,SHAO Z,et al.An intrusion detection model based on deep belief network[C]//2017 VI International Conference on Network,Communication and Computing,2017:97-101.
[11] XIAO Y,XING C,ZHANG T,et al.An intrusion detection model based on feature reduction and convolutional neural networks[J].IEEE Access,2019,7:42210-42219.
[12] NASEER S.Enhanced network intrusion detection using deep convolutional neural networks[J].KSII Transactions on Internet & Information Systems,2018,12(10):5159-5178.
[13] 燕昺昊,韩国栋.基于深度循环神经网络和改进SMOTE算法的组合式入侵检测模型[J].网络与信息安全学报,2018,4(7):48-59.
YAN B H,HAN G D.Combinatorial intrusion detection model based on deep recurrent neural network and improved SMOTE algorithm[J].Chinese Journal of Network and Information Security,2018,4(7):48-59.
[14] YAN B,HAN G.LA-GRU:building combined intrusion detection model based on imbalanced learning and gated recurrent unit neural network[J].Security and Communication Networks,2018:6026878.
[15] WANG W,SHENG Y,WANG J,et al.HAST-IDS:learning hierarchical spatial-temporal features using deep neural networks to improve intrusion detection[J].IEEE Access,2018,6:1792-1806.
[16] 高忠石,苏旸,柳玉东.基于PCA-LSTM的入侵检测研究[J].计算机科学,2019,46(S2):473-476.
GAO Z S,SU Y,LIU Y D.Study on intrusion detection based on PCA-LSTM[J].Computer Science,2019,46(S2):473-476.
[17] XIE X,JIANG X,WANG W,et al.An intrusion detection method based on hierarchical feature learning and its application[C]//11th International Symposium on Cyberspace Safety and Security,Guangzhou,Dec 1-3,2019.
[18] 石乐义,朱红强,刘祎豪,等.基于相关信息熵和CNN-BiLSTM的工业控制系统入侵检测[J].计算机研究与发展,2019,56(11):2330-2338.
SHI L Y,ZHU H Q,LIU Y H,et al.Intrusion detection of industrial control system based on correlation information entropy and CNN-BiLSTM[J].Journal of Computer Research and Development,2019,56(11):2330-2338.
[19] TIAN Q,LI J,LIU H.A method for guaranteeing wireless communication based on a combination of deep and shallow learning[J].IEEE Access,2019,7:38688-38695.
[20] LI Y,XU Y,LIU Z,et al.Robust detection for network intrusion of industrial IoT based on multi-CNN fusion[J].Measurement,2019,154:107450.
[21] ZHANG J,LING Y,FU X,et al.Model of the intrusion detection system based on the integration of spatial-temporal features[J].Computers & Security,2020,89:101681.
[22] 唐成华,刘鹏程,汤申生,等.基于特征选择的模糊聚类异常入侵行为检测[J].计算机研究与发展,2015,52(3):718-728.
TANG C H,LIU P C,TANG S S,et al.Anomaly intrusion behavior detecion based on fuzzy clustering and features selection[J].Journal of Computer Research and Development,2015,52(3):718-728.
[23] 姚晟,徐风,赵鹏,等.基于自适应邻域空间粗糙集模型的直觉模糊熵特征选择[J].计算机研究与发展,2018,55(4):802-814.
YAO S,XU F,ZHAO P,et al.Intuitionistic fuzzy entropy feature selection algorithm based on adaptive neighborhood space rough set model[J].Journal of Computer Research and Development,2018,55(4):802-814.
[24] 郭亚庆,王文剑,苏美红.一种针对异常点的自适应回归特征选择方法[J].计算机研究与发展,2019,56(8):1695-1707.
GUO Y Q,WANG W J,SU M H.An adaptive regression feature selection method for datasets with outliers[J].Journal of Computer Research and Development,2019,56(8):1695-1707.
[25] JUN Y Y,LEAU Y B,ALIAS S,et al.A multi-filter feature selection in detecting distributed denial-of-service attack[C]//2019 the 3rd International Conference on Tele-communications and Communication Engineering,2019.
[26] MOUSTAFA N,SLAY J.UNSW-NB15:a comprehensive data set for network intrusion detection systems(UNSW-NB15 network data set)[C]//Military Communications and Information Systems Conference,2015.
[27] MANASWI K N.Deep learning with applications using Python[M].Berkeley:Apress,2018:105-114.