Dense Road Vehicle Detection Based on Lightweight ConvLSTM
JIN Zhi, ZHANG Qian, LI Xiying
1.School of Intelligent Systems Engineering, Sun Yat-sen University, Guangzhou 510006, China
2.Guangdong Province Key Laboratory of Intelligent Transportation System, Guangzhou 510006, China
3.Key Laboratory of Video and Image Intelligent Analysis and Application Technology, Ministry of Public Security, Guangzhou 510006, China
JIN Zhi, ZHANG Qian, LI Xiying. Dense Road Vehicle Detection Based on Lightweight ConvLSTM[J]. Computer Engineering and Applications, 2023, 59(8): 89-96.
[1] SUNDERMEYER M,SCHKUTER R,NEY H.LSTM neural networks for language modeling[C]//The 13th Annual Conference of the International Speech Communication Association,2012:194-197.
[2] SHI X,CHEN Z,WANG H,et al.Convolutional LSTM network:a machine learning approach for precipitation nowcasting[J].arXiv:1506.04214,2015.
[3] BO H,HUANG H,LU H.Convolutional gated recurrent units fusion for video action recognition[C]//International Conference on Neural Information Processing.Cham:Springer,2017:114-223.
[4] TANG Q,YANG M,YANG Y.ST-LSTM:a deep learning approach combined spatio-temporal features for short-term forecast in rail transit[J].Journal of Advanced Transportation,2019,2019:1-8.
[5] ZHU G,ZHANG L.Redundancy and attention in convolutional LSTM for gesture recognition[J].IEEE Transactions on Neural Networks and Learning Systems,2019,31(4):1323-1335.
[6] ZHOU X,SHEN Y,ZHU Y,et al.Predicting multi-step citywide passenger demands using attention-based neural networks[C]//Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining.Marina Del Rey,CA.USA:Association for Computing Machinery,2018:736-744.
[7] 吴哲夫,张令威,刘光宇,等.基于空间自适应卷积LSTM的视频预测[J].计算机应用与软件,2020,37(9):62-67.
WU Zhefu,ZHANG Lingwei,LIU Guangyu,et al.Video prediction based on spatial adaptive ConvLSTM[J].Computer Applications and Software,2020,37(9):62-67.
[8] 王兵,乐红霞,李文璟,等.改进YOLO轻量化网络的口罩检测算法[J].计算机工程与应用,2021,57(8):62-69.
WANG Bing,LE Hongxia,LI Wenjing,et al.Mask detection algorithm based on improved YOLO lightweight network[J].Computer Engineering and Applications,2021,57(8):62-69.
[9] 陈柳,陈明举,薛智爽,等.轻量化高精度卷积神经网络的安全帽识别方法[J].计算机工程与应用,2021,57(22):177-181.
CHEN Liu,CHEN Mingju,XUE Zhishuang,et al.Lightweight and high-precision convolutional neural network for helmet recognition method[J].Computer Engineering and Applications,2021,57(22):177-181.
[10] REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:unified,real-time object detection[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Washington:IEEE Computer Society,2016:779-788.
[11] LIU W,ANGUELOV D,ERHAN D,et al.SSD:single shot multibox detector[C]//Lecture Notes in Computer Science:9905.Heidelberg:Springer-Verlag,2016:21-37.
[12] REN S Q,HE K M,GIRSHICK R,et al.Faster R-CNN:towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2017,39(6):1137-1149.
[13] REDMON J,FARHADI A.YOLO9000:better,faster,stronger[C]//Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE,2017:6517-6525.
[14] REDMON J,FARHADI A.Yolov3:an incremental improvement[J].arXiv:1804.02767,2018.
[15] BOCHHKOVSKIY A,WANG C Y,LIAO H Y M.YOLOv4:optimal speed and accuracy of object detection[J].arXiv:2004.10934,2020.
[16] 王滢暄,宋焕生,梁浩翔,等.基于改进的YOLOv4高速公路车辆目标检测研究[J].计算机工程与应用,2021,57(13):218-226.
WANG Yingxuan,SONG Huansheng,LIANG Haoxiang,et al.Highway vehicle object detection based on improved YOLOv4 method[J].Computer Engineering and Applications,2021,57(13):218-226.
[17] 李震霄,孙伟,刘明明,等.交通监控场景中的车辆检测与跟踪算法研究[J].计算机工程与应用,2021,57(8):103-111.
LI Zhenxiao,SUN Wei,LIU Mingming,et al.Research on vehicle detection and tracking algorithms in traffic monitoring scenes[J].Computer Engineering and Applications,2021,57(8):103-111.
[18] JOCHER G,STOKEN A,BOROVEC J,et al.Yolov5[EB/OL].[2020-08-13].https://github.com/ultraly tics/yoloV5.
[19] HUANG X,WANG X,LV W,et al.PP-YOLOv2:a practical object detector[J].arXiv:2104.10419,2021.
[20] TAN M,PANG R,LE Q V.Efficientdet:scalable and efficient object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2020:10781-10790.