[1] MüLLER R R,BEREYHI A,MECKLENBR?UKER C F.Oversampled adaptive sensing with random projections:analysis and algorithmic approaches[C]//2018 IEEE International Symposium on Signal Processing and Information Technology,2018:336-341.
[2] CHAWLA N V,BOWYER K W,HALL L O,et al.SMOTE:synthetic minority over-sampling technique[J].Journal of Artificial Intelligence Research,2002,16:321-357.
[3] LU C,LIN S,LIU X,et al.Telecom fraud identification based on ADASYN and random forest[C]//2020 5th International Conference on Computer and Communication Systems,2020:447-452.
[4] PAN S J,TSANG I W,KWOK J T,et al.Domain adaptation via transfer component analysis[J].IEEE Transactions on Neural Networks,2010,22(2):199-210.
[5] NAM J,FU W,KIM S,et al.Heterogeneous defect prediction[J].IEEE Transactions on Software Engineering,2017,44(9):874-896.
[6] JING X,WU F,DONG X,et al.Heterogeneous cross-company defect prediction by unified metric representation and CCA-based transfer learning[C]//Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering,2015:496-507.
[7] TURHAN B.On the dataset shift problem in software engineering prediction models[J].Empirical Software Engineering,2012,17(1):62-74.
[8] HAN H,WANG W Y,MAO B H.Borderline-SMOTE:a new over-sampling method in imbalanced data sets learning[C]//2005 International Conference on Intelligent Computing.Berlin,Heidelberg:Springer,2005:878-887.
[9] BENNIN K E,KEUNG J,PHANNACHITTA P,et al.MAHAKIL:diversity based oversampling approach to alleviate the class imbalance issue in software defect prediction[J].IEEE Transactions on Software Engineering,2017,44(6):534-550.
[10] KWAK N,CHOI C H.Input feature selection by mutual information based on parzen window[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(12):1667-1671.
[11] DASH M,LIU H.Consistency-based search in feature selection[J].Artificial Intelligence,2003,151(1/2):155-176.
[12] 孙广路,宋智超,刘金来,等.基于最大信息系数和近似马尔科夫毯的特征选择方法[J].自动化学报,2017,43(5):795-805.
SUN G L,SONG Z C,LIU J L,et al.Feature selection method based on maximum information coefficient and approximate Markov blanket[J].Acta Automatica Sinica,2017,43(5):795-805.
[13] YANG J B,SHEN K Q,ONG C J,et al.Feature selection for MLP neural network:the use of random permutation of probabilistic outputs[J].IEEE Transactions on Neural Networks,2009,20(12):1911-1922.
[14] 张戈,王建林.基于混合ABC和CRO的高维特征选择方法[J].计算机工程与应用,2019,55(11):93-101.
ZHANG G,WANG J L.High dimensional feature selection method based on hybrid ABC and CRO[J].Computer Engineering and Applications,2019,55(11):93-101.
[15] BHARDWAJ R,VATTA S.Implementation of ID3 algorithm[J].International Journal of Advanced Research in Computer Science and Software Engineering,2013,3(6).
[16] QUINLAN J R.C4.5:programs for machine learning[M].San Francisco:Morgan Kaufmann Publishers Inc,2014:17-27.
[17] BREIMAN L,FRIEDMAN J H,OLSHEN R A,et al.Classification and regression trees[M].[S.l.]:Routledge,2017:297-318.