计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (19): 311-319.DOI: 10.3778/j.issn.1002-8331.2410-0425

• 工程与应用 • 上一篇    下一篇

改进YOLOv8的矿用传输带异物检测方法

杨迪,赵培培,孙奥然,张君逸,肖涛   

  1. 1.中国矿业大学 信息与控制工程学院,江苏 徐州 221116
    2.常州海图信息科技股份有限公司,江苏 常州 213000
  • 出版日期:2025-10-01 发布日期:2025-09-30

Improving YOLOv8 Method for Coal Mine Conveyor Belt Foreign Body Detection

YANG Di, ZHAO Peipei, SUN Aoran, ZHANG Junyi, XIAO Tao   

  1. 1.School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
    2.Changzhou Haitu Information Technology Co., Ltd., Changzhou, Jiangsu 213000, China
  • Online:2025-10-01 Published:2025-09-30

摘要: 目前矿井下输送带图像存在昏暗环境清晰度差、图像噪点等问题,现有检测算法模型存在复杂度高、漏检和错检、精度不足等问题。基于上述问题,提出一种改进YOLOv8模型。使用轻量级ShuffleNetv2作为头部网络减少模型参数量,并构建多尺度组合注意力机制(multi-scale composite attention module,MSCAM)来增强特征提取能力,以降低漏检率和错检率;针对现有模型对长条状异物准确率低的问题,在C2f模块中使用动态可变形卷积(DDConv)的思想,使模型更容易提取长条状异物结构特征;使用具有角度损失的SIoU新型损失函数,提升模型训练能力和推理性能。在MTBID数据集进行验证,实验结果表明:改进模型的mAP@0.5可达0.893,mAP@0.5:0.95可达0.663,参数量相较于YOLOv8n减少了27.6%。

关键词: 目标检测, YOLOv8n, ShuffleNetv2, 异物识别, 轻量化

Abstract: At present, there are some problems such as poor clarity in dark environment, image noise, high complexity of existing detection algorithm model, missing and wrong detection, and insufficient accuracy. Based on the above problems, an improved YOLOv8 model is proposed. Firstly, lightweight ShuffleNetv2 is used as the header network to reduce the number of model parameters, and multi-scale composite attention module (MSCAM) is constructed to enhance the feature extraction capability to reduce the miss and error detection rates. Secondly, in view of the low accuracy of existing models for long foreign bodies, the idea of dynamic deformable convolution (DDConv) is used in C2f module to make it easier to extract the structural features of long foreign bodies. Finally, the new SIoU loss function with angle loss is used to improve the training ability and inference performance of the model. The MTBID dataset is verified. The experimental results show that: mAP@0.5 and mAP@0.5:0.95 of the improved model can reach 0.893, 0.663, and the number of parameters is reduced by 27.6% compared with YOLOv8n.

Key words: target detection, YOLOv8n, ShuffleNetv2, foreign body recognition, light weight