[1] 卢慧颖. 动力澎湃韧性十足[N]. 中国煤炭报, 2024-06-04(3).
LU H Y. Full of power and toughness[N]. China Coal Daily, 2024-06-04(3).
[2] 田冬艳, 丁苏凡, 郭星歌. 基于图像处理的煤矸识别方法[J]. 煤炭技术, 2022, 41(3): 201-204.
TIAN D Y, DING S F, GUO X G. Coal and gangue identification method based on image processing[J]. Coal Technology, 2022, 41(3): 201-204.
[3] 王学立, 赵辰燃, 李青, 等. 基于多模态的输送带撕裂大模型算法设计[J]. 煤矿安全, 2023, 54(9): 202-207.
WANG X L, ZHAO C R, LI Q, et al. Algorithm design of large model of belt tearing based on multi-modality[J]. Safety in Coal Mines, 2023, 54(9): 202-207.
[4] 郭永存, 何磊, 刘普壮, 等. 煤矸双能X射线图像多维度分析识别方法[J]. 煤炭学报, 2021, 46(1): 300-309.
GUO Y C, HE L, LIU P Z, et al. Multi-dimensional analysis and recognition method of coal and gangue dual-energy X-ray images[J]. Journal of China Coal Society, 2021, 46(1): 300-309.
[5] 王锐, 桂志国, 刘祎, 等. 基于X射线和结构光相机的煤矸石分拣方法研究[J]. 中北大学学报 (自然科学版), 2021, 42(2): 123-128.
WANG R, GUI Z G, LIU Y, et al. Research on coal gangue sorting method based on X-ray and structured light camera[J]. Journal of North University of China (Natural Science Edition), 2021, 42(2): 123-128.
[6] 王言, 邢冀川, 王遥志. 基于激光雷达的双通道伪彩图像煤矸识别方法[J]. 激光与光电子学进展, 2024, 61(4): 532-541.
WANG Y, XING J C, WANG Y Z. Coal and gangue recognition method based on dual-channel pseudocolor image by lidar[J]. Laser & Optoelectronics Progress, 2024, 61(4): 532-541.
[7] 卢才武, 闫雪颂, 刘力, 等. 一种改进的无锚框式金属矿带式输送机异物检测方法[J]. 采矿技术, 2022, 22(1): 150-154.
LU C W, YAN X S, LIU L, et al. An improved method for detecting foreign bodies in metal mine belt conveyor without anchor frame[J]. Mining Technology, 2022, 22(1): 150-154.
[8] 程德强, 徐进洋, 寇旗旗, 等. 融合残差信息轻量级网络的运煤皮带异物分类[J]. 煤炭学报, 2022, 47(3): 1361-1369.
CHENG D Q, XU J Y, KOU Q Q, et al. Lightweight network based on residual information for foreign body classification on coal conveyor belt[J]. Journal of China Coal Society, 2022, 47(3): 1361-1369.
[9] 朱名乾, 刘宾. 基于改进PSO-KMeans煤炭异物筛选算法研究[J]. 舰船电子工程, 2024, 44(2): 35-39.
ZHU M Q, LIU B. Research on foreign matter screening algorithm in coal based on improved PSO-KMeans[J]. Ship Electronic Engineering, 2024, 44(2): 35-39.
[10] 吕志强. 复杂环境下煤矿皮带运输异物图像识别研究[D]. 徐州: 中国矿业大学, 2020.
LYU Z Q. Research on image recognition of foreign bodies in the process of coal mine belt transportation in complex environment[D]. Xuzhou: China University of Mining and Technology, 2020.
[11] 胡璟皓, 高妍, 张红娟, 等. 基于深度学习的带式输送机非煤异物识别方法[J]. 工矿自动化, 2021, 47(6): 57-62.
HU J H, GAO Y, ZHANG H J, et al. Research on the identification method of non-coal foreign object of belt conveyor based on deep learning[J]. Industry and Mine Automation, 2021, 47(6): 57-62.
[12] 于志强. 基于机器视觉的异物识别系统在输送机保护中的应用[J]. 煤矿安全, 2024, 55(5): 251-256.
YU Z Q. Application of foreign object recognition system based on machine vision in conveyor protection[J]. Safety in Coal Mines, 2024, 55(5): 251-256.
[13] 毛清华, 李世坤, 胡鑫, 等. 基于改进YOLOv7的煤矿带式输送机异物识别[J]. 工矿自动化, 2022, 48(12): 26-32.
MAO Q H, LI S K, HU X, et al. Foreign object recognition of belt conveyor in coal mine based on improved YOLOv7[J]. Journal of Mine Automation, 2022, 48(12): 26-32.
[14] 陈彪, 卢兆林, 代伟, 等. 基于轻量化HPG-YOLOX-S模型的煤矸石图像精准识别[J]. 工矿自动化, 2022, 48(11): 33-38.
CHEN B, LU Z L, DAI W, et al. Accurate recognition of coal-gangue image based on lightweight HPG-YOLOX-S model[J]. Journal of Mine Automation, 2022, 48(11): 33-38.
[15] QI Y L, HE Y T, QI X M, et al. Dynamic snake convolution based on topological geometric constraints for tubular structure segmentation[C]//Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 6047-6056.
[16] GEVORGYAN Z. SIoU loss: more powerful learning for bounding box regression[J]. arXiv:2205.12740, 2022.
[17] MA N N, ZHANG X Y, ZHENG H T, et al. ShuffleNet V2: practical guidelines for efficient CNN architecture design[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer, 2018: 122-138.
[18] 高涵, 赵培培, 于正, 等. 基于特征增强与Transformer的煤矿输送带异物检测[J]. 煤炭科学技术, 2024, 52(7): 199-208.
GAO H, ZHAO P P, YU Z, et al. Coal mine conveyor belt foreign object detection based on feature enhancement and Transformer[J]. Coal Science and Technology, 2024, 52(7): 199-208.
[19] 唐俊, 李敬兆, 石晴, 等. 基于Faster-YOLOv7的带式输送机异物实时检测[J]. 工矿自动化, 2023, 49(11): 46-52.
TANG J, LI J Z, SHI Q, et al. Real time detection of foreign objects in belt conveyors based on Faster-YOLOv7[J]. Journal of Mine Automation, 2023, 49(11): 46-52.
[20] 郝帅, 张旭, 马旭, 等. 基于CBAM-YOLOv5的煤矿输送带异物检测[J]. 煤炭学报, 2022, 47(11): 4147-4156.
HAO S, ZHANG X, MA X, et al. Foreign object detection in coal mine conveyor belt based on CBAM-YOLOv5[J]. Journal of China Coal Society, 2022, 47(11): 4147-4156.
[21] 杜京义, 陈瑞, 郝乐, 等. 煤矿带式输送机异物检测[J]. 工矿自动化, 2021, 47(8): 77-83.
DU J Y, CHEN R, HAO L, et al. Coal mine belt conveyor foreign object detection[J]. Industry and Mine Automation, 2021, 47(8): 77-83.
[22] 郑荣添, 陈泽同, 管孝汉, 等. 基于深度学习的无人机河道巡检异物监测技术研究[J/OL]. 水力发电学报: 1-11[2024-11-20]. https://link.cnki.net/urlid/11.2241.TV.20241112.0941.
002.
ZHENG R T, CHEN Z T, GUAN X H, et al. Research on monitoring technology of foreign bodies in river by UAV based on deep learning[J]. Journal of Hydroelectric Engineering: 1-11[2024-11-20]. https://link.cnki.net/urlid/11.2241.
TV.20241112.0941.002.
[23] 易磊, 黄哲玮, 易雅雯. 改进YOLOv8的输电线路异物检测方法[J]. 电子测量技术, 2024, 47(15): 125-134.
YI L, HUANG Z W, YI Y W. Improved YOLOv8 foreign object detection method for transmission lines[J]. Electronic Measurement Technology, 2024, 47(15): 125-134. |