[1] 中华人民共和国公安部. 全国机动车保有量达4.35亿辆驾驶人达5.23亿人新能源汽车保有量超过2000万辆[EB/OL]. [2024-01-11]. https://www.mps.gov.cn/n2254098/n4904352/c9384864/ content.html.
Ministry of Public Security, People's Republic of China. The number of motor vehicles in China reached 435 million, with 523 million drivers, and the number of new energy vehicles exceeded 20 million[EB/OL]. [2024-01-11]. https://www.mps.gov.cn/n2254098/n4904352/c9384864/content.html.
[2] XIE G T, GAO H B, HUANG B, et al. A driving behavior awareness model based on a dynamic Bayesian network and distributed genetic algorithm[J]. International Journal of Computational Intelligence Systems, 2018, 11(1): 469-482.
[3] MIN K, KIM D, PARK J, et al. RNN-based path prediction of obstacle vehicles with deep ensemble[J]. IEEE Transactions on Vehicular Technology, 2019, 68(10): 10252-10256.
[4] DEO N, TRIVEDI M M. Convolutional social pooling for vehicle trajectory prediction[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2018: 1468-1476.
[5] 孟宪伟, 唐进君, 王喆. 考虑换道意图的LSTM-AdaBoost车辆轨迹预测模型[J]. 计算机工程与应用, 2022, 58(13): 280-287.
MENG X W, TANG J J, WANG Z. Trajectory prediction of vehicles based on LSTM-AdaBoost model considering lane-changing intention[J]. Computer Engineering and Applications, 2022, 58(13): 280-287.
[6] PHAN-MINH T, GRIGORE E C, BOULTON F A, et al. CoverNet: multimodal behavior prediction using trajectory sets[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 14062-14071.
[7] CHAI Y N, SAPP B, BANSAL M, et al. MultiPath: multiple probabilistic anchor trajectory hypotheses for behavior prediction[J]. arXiv:1910.05449, 2019.
[8] DEO N, TRIVEDI M M. Trajectory forecasts in unknown environments conditioned on grid-based plans[J]. arXiv:2001. 00735, 2020.
[9] GAO J Y, SUN C, ZHAO H, et al. VectorNet: encoding HD maps and agent dynamics from vectorized representation[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 11522-11530.
[10] LIANG M, YANG B, HU R, et al. Learning lane graph representations for motion forecasting[C]//Proceedings of the 16th European Conference on Computer Vision. Cham: Springer, 2020: 541-556.
[11] 胡启慧, 蔡英凤, 王海, 等. 基于层次图注意的异构多目标轨迹预测方法[J]. 汽车工程, 2023, 45(8): 1448-1456.
HU Q H, CAI Y F, WANG H, et al. Heterogeneous multi-object trajectory prediction method based on hierarchical graph attention[J]. Automotive Engineering, 2023, 45(8): 1448-1456.
[12] 周亦威, 夏莫, 朱冰. 城市道路场景下考虑多类交通参与者的多模态车辆轨迹预测方法研究[J]. 汽车工程, 2024, 46(3): 396-406.
ZHOU Y W, XIA M, ZHU B. Multimodal vehicle trajectory prediction methods considering multiple traffic participants in urban road scenarios[J]. Automotive Engineering, 2024, 46(3): 396-406.
[13] JIA X S, WU P H, CHEN L, et al. HDGT: heterogeneous driving graph transformer for multi-agent trajectory prediction via scene encoding[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(11): 13860-13875.
[14] LIU M M, CHENG H, CHEN L, et al. LAformer: trajectory prediction for autonomous driving with lane-aware scene constraints[J]. arXiv:2302.13933, 2023.
[15] NAYAKANTI N, AL-RFOU R, ZHOU A, et al. Wayformer: motion forecasting via simple & efficient attention networks[C]//Proceedings of the 2023 IEEE International Conference on Robotics and Automation. Piscataway: IEEE, 2023: 2980-2987.
[16] ZHANG Z J, LINIGER A, SAKARIDIS C, et al. Real-time motion prediction via heterogeneous polyline transformer with relative pose encoding[C]//Advances in Neural Information Processing Systems, 2024.
[17] FENG C, ZHOU H N, LIN H D, et al. MacFormer: map-agent coupled transformer for real-time and robust trajectory prediction[J]. IEEE Robotics and Automation Letters, 2023, 8(10): 6795-6802.
[18] VARADARAJAN B, HEFNY A, SRIVASTAVA A, et al. MultiPath++: efficient information fusion and trajectory aggregation for behavior prediction[C]//Proceedings of the 2022 International Conference on Robotics and Automation. Piscataway: IEEE, 2022: 7814-7821.
[19] ZHAO H, GAO J, LAN T, et al. TNT: target-driven trajectory prediction[C]//Proceedings of the 2020 Conference on Robot Learning, 2021: 895-904.
[20] GU J R, SUN C, ZHAO H. DenseTNT: end-to-end trajectory prediction from dense goal sets[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 15283-15292.
[21] GILLES T, SABATINI S, TSISHKOU D, et al. GOHOME: graph-oriented heatmap output for future motion estimation[C]//Proceedings of the 2022 International Conference on Robotics and Automation. Piscataway: IEEE, 2022: 9107-9114.
[22] GILLES T, SABATINI S, TSISHKOU D, et al. THOMAS: trajectory heatmap output with learned multi-agent sampling[J]. arXiv:2110.06607, 2021.
[23] ROCKLAGE E, KRAFT H, KARATAS A, et al. Automated scenario generation for regression testing of autonomous vehicles[C]//Proceedings of the 2017 IEEE 20th International Conference on Intelligent Transportation Systems. Piscataway: IEEE, 2017: 476-483.
[24] GRAVES A, GRAVES A. Long short-term memory[M]//Supervised sequence labelling with recurrent neural networks. Berlin, Heidelberg: Springer, 2012: 37-45.
[25] RASOULI A, KOTSERUBA I, TSOTSOS J K. Pedestrian action anticipation using contextual feature fusion in stacked RNNs[J]. arXiv:2005.06582, 2020.
[26] DEO N, WOLFF E M, BEIJBOM O. Multimodal trajectory prediction conditioned on lane-graph traversals[C]//Proceedings of the Conference on Robot Learning, 2022: 203-212.
[27] VELI?KOVI? P, CUCURULL G, CASANOVA A, et al. Graph attention networks[C]//Proceedings of the International Conference on Learning Representations, 2018: 1-12.
[28] LI Z N, YU H. Trajectory prediction for autonomous driving using a transformer network[J]. arXiv:2402.16501, 2024.
[29] SUN R, LINGRAND D, PRECIOSO F. Exploring the road graph in trajectory forecasting for autonomous driving[C]//Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision Workshops. Piscataway: IEEE, 2023: 71-80.
[30] WANG C H, WANG Y C, XU M Z, et al. Stepwise goal-driven networks for trajectory prediction[J]. IEEE Robotics and Automation Letters, 2022, 7(2): 2716-2723.
[31] SALZMANN T, IVANOVIC B, CHAKRAVARTY P, et al. Trajectron++: dynamically-feasible trajectory forecasting with heterogeneous data[C]//Proceedings of the 16th European Conference on Computer Vision. Cham: Springer, 2020: 683-700.
[32] KIM B, PARK S H, LEE S, et al. LaPred: lane-aware prediction of multi-modal future trajectories of dynamic agents[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 14631-14640.
[33] WANG Z B, GUO J Y, HU Z M, et al. Lane transformer: a high-efficiency trajectory prediction model[J]. IEEE Open Journal of Intelligent Transportation Systems, 2023, 4: 2-13. |