[1] 郭迎, 梁睿琳, 王润民. 基于CNN图像增强的雾天跨域自适应目标检测[J]. 计算机工程与应用, 2023, 59(16): 187-195.
GUO Y, LIANG R L, WANG R M. Cross-domain adaptive object detection based on CNN image enhancement in foggy conditions[J]. Computer Engineering and Applications, 2023, 59(16): 187-195.
[2] 赖镜安, 陈紫强, 孙宗威, 等. 基于YOLOv5的轻量级雾天目标检测方法[J]. 计算机工程与应用, 2024, 60(6): 78-88.
LAI J A, CHEN Z Q, SUN Z W, et al. Lightweight foggy weather object detection method based on YOLOv5[J]. Computer Engineering and Applications, 2024, 60(6): 78-88.
[3] 万雨昊. 复杂道路环境下的车辆牌照检测与识别[J]. 计算机辅助工程, 2024, 33(2): 31-37.
WAN Y H. Vehicle license plate detection and recognition in complex road environments[J]. Computer Aided Engineering, 2024, 33(2): 31-37.
[4] ZHANG L, WANG M, DING Y, et al. MS-FRCNN: a multi-scale faster RCNN model for small target forest fire detection[J]. Forests, 2023, 14(3): 616.
[5] HUO B, LI C, ZHANG J, et al. SAFF-SSD: self-attention combined feature fusion-based SSD for small object detection in remote sensing[J]. Remote Sensing, 2023, 15(12): 3027.
[6] YU Z, HUANG H, CHEN W, et al. YOLO-Facev2: a scale and occlusion aware face detector[J]. Pattern Recognition, 2024, 155: 110714.
[7] PU Y, LIANG W, HAO Y, et al. Rank-DETR for high quality object detection[J]. arXiv:2310.08854, 2023.
[8] ZHAO C, SUN Y, WANG W, et al. MS-DETR: efficient DETR training with mixed supervision[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2024: 17027-17036.
[9] KIM J, LEE M, HEO J P. Self-feedback DETR for temporal action detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023: 10286-10296.
[10] ZHANG G, LUO Z, HUANG J, et al. Semantic-aligned matching for enhanced detr convergence and multi-scale feature fusion[J]. arXiv:2207.14172, 2022.
[11] 袁姮, 颜廷昊, 张晟翀. 两阶段特征迁移图像去雾算法[J]计算机工程与应用, 2025, 61(4): 241-252.
YUAN H, YAN T H, ZHANG S Y. Two-stage feature transfer image dehazing algorithm[J]. Computer Engineering and Applications, 2025, 61(4): 241-252.
[12] 吴攀超, 郑卓纹, 王婷婷, 等. 基于CF-YOLO的雾霾交通标志识别[J]. 计算机工程与设计, 2024, 45(7): 2203-2211.
WU P C, ZHENG Z W, WANG T T, et al. Foggy traffic sign recognition based on CF-YOLO[J]. Computer Engineering and Design, 2024, 45(7): 2203-2211.
[13] 刘庆敏, 冯贺阳, 王中, 等. 基于全局及局部优势特征融合的遥感图像去雾方法[J]. 海军航空大学学报, 2024, 39(4): 467-474.
LIU Q M, FENG H Y, WANG Z, et al. Remote sensing image dehazing method based on global and local advantageous feature fusion[J]. Journal of Naval Aviation University, 2024, 39(4): 467-474.
[14] JIN X, TANG R, LIU L, et al. Vehicle license plate recognition for fog‐haze environments[J]. IET Image Processing, 2021, 15(6): 1273-1284.
[15] 吴正平, 岑帅红. 基于自适应gamma校正估计的图像去雾算法[J]. 液晶与显示, 2022, 37(1): 106-115.
WU Z P, CEN S H. Image dehazing algorithm based on adaptive gamma correction estimation[J]. Liquid Crystals and Displays, 2022, 37(1): 106-115.
[16] SAHU G, SEAL A, JAWOREK-KORJAKOWSKA J, et al. Single image dehazing via fusion of multilevel attention network for vision-based measurement applications[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 1-15.
[17] YIN X, YU Z, FEI Z, et al. PE-YOLO: pyramid enhancement network for dark object detection[C]//Proceedings of the International Conference on Artificial Neural Networks, 2023: 163-174.
[18] ZHANG L, ZHAO J, LANG Z, et al. Vehicle detection algorithm for foggy based on improved AOD-Net[J]. Transactions of the Institute of Measurement and Control, 2024, 46 (14): 2696-2705.
[19] ZHENG Y, ZHAN J, HE S, et al. Curricular contrastive regularization for physics-aware single image dehazing[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 5785-5794.
[20] WU R Q, DUAN Z P, GUO C L, et al. RIDCP: revitalizing real image dehazing via high-quality codebook priors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 22282-22291.
[21] ZHENG Q, SAPONARA S, TIAN X, et al. A real-time constellation image classification method of wireless communication signals based on the lightweight network MobileViT[J]. Cognitive Neurodynamics, 2024, 18(2): 659-671.
[22] ZHENG Q, TIAN X, YU Z, et al. MobileRaT: a lightweight radio transformer method for automatic modulation classification in drone communication systems[J]. Drones, 2023, 7(10): 596.
[23] SINDAGI V A, OZA P, YASARLA R, et al. Prior-based domain adaptive object detection for hazy and rainy conditions[C]//Proceedings of the 16th European Conference on Computer Vision, 2020: 763-780.
[24] 关家志. 基于特征融合的复杂天气下图像识别鲁棒模型[J]. 信息与电脑(理论版), 2022, 34(7): 143-145.
GUAN J Z. Robust image recognition model under complex weather based on feature fusion[J]. Information and Computer (Theoretical Edition), 2022, 34(7): 143-145.
[25] LI J, XU R, MA J, et al. Domain adaptive object detection for autonomous driving under foggy weather[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2023: 612-622.
[26] 崔雨箫, 陈超, 潘宝峰, 等. 基于深度学习的复杂环境下船舶视觉检测方法[J]. 船舶工程, 2024, 46(2): 106-114.
CUI Y X, CHEN C, PAN B F, et al. Deep learning-based ship detection approach under complex environments[J]. Ship Engineering, 2024, 46(2): 106-114.
[27] HNEWA M, RADHA H. Integrated multiscale domain adaptive YOLO[J]. IEEE Transactions on Image Processing, 2023, 32: 1857-1867.
[28] 王新蕾, 王硕, 翟嘉政, 等. 多任务联合学习下的复杂天气航拍图像目标检测算法[J]. 计算机工程与应用, 2025, 61(2): 97-111.
WANG X L, WANG S, ZHAI J Z, et al. Multi-task joint learning algorithm for aerial image object detection in complex weather[J]. Computer Engineering and Applications, 2025, 61(2): 97-111.
[29] LIU W, REN G, YU R, et al. Image-adaptive YOLO for object detection in adverse weather conditions[C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2022: 1792-1800.
[30] RANJAN R, AVASTHI V. Edge detection using guided sobel image filtering[J]. Wireless Personal Communications, 2023, 132(1): 651-677.
[31] GUO A, SUN K, ZHANG Z. A lightweight YOLOv8 integrating FasterNet for real-time underwater object detection[J]. Journal of Real-Time Image Processing, 2024, 21(2): 49.
[32] SHAKER A, MAAZ M, RASHEED H, et al. SwiftFormer: efficient additive attention for transformer-based real-time mobile vision applications[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023: 17425-17436.
[33] YUE G, LI S, CONG R, et al. Attention-guided pyramid context network for polyp segmentation in colonoscopy images[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 1-13.
[34] NI Z, CHEN X, ZHAI Y, et al. Context-guided spatial feature reconstruction for efficient semantic segmentation[J]. arXiv:2405.06228, 2024.
[35] LI B, REN W, FU D, et al. Benchmarking single-image dehazing and beyond[J]. IEEE Transactions on Image Processing, 2018, 28(1): 492-505.
[36] MENG X, LIU Y, FAN L, et al. YOLOv5s-Fog: an improved model based on YOLOv5s for object detection in foggy weather scenarios[J]. Sensors, 2023, 23(11): 5321. |