计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (10): 185-191.DOI: 10.3778/j.issn.1002-8331.2402-0204

• 模式识别与人工智能 • 上一篇    下一篇

基于改进DETR模型的SAR图像舰船检测方法

秦伟伟,迟昊,朱晓菲,秦庆强,梁卓   

  1. 1.火箭军工程大学 核工程学院,西安 710025
    2.火箭军装备部,北京 101025
    3.中国运载火箭研究院,北京 100076
  • 出版日期:2025-05-15 发布日期:2025-05-15

Ship Detection Method for SAR Images Based on Improved DETR Model

QIN Weiwei, CHI Hao, ZHU Xiaofei, QIN Qingqiang, LIANG Zhuo   

  1. 1.School of Nuclear Engineering, Rocket Force University of Engineering, Xi’an 710025, China
    2.Equipment Department of Rocket Force, Beijing 101025, China
    3.China Academy of Launch Vehicle Technology, Beijing 100076, China
  • Online:2025-05-15 Published:2025-05-15

摘要: 针对DETR(detection transformer)结构在SAR(synthetic aperture radar)图像舰船检测中存在收敛速度慢、弱小目标易漏检等问题,提出了一种基于多尺度注意力模块和标签对抗训练的改进DETR结构。利用骨干网络提取多尺度特征图,构建多尺度注意力权重矩阵和特征图区域采样方式,有效提高了DETR结构的检测能力;在解码器结构中设计了标签对抗训练模块以解决对目标的重复预测,抑制目标预选框的混淆,并大幅加快模型的收敛速度。在公开的HRSID数据集上进行了算法测试,结果表明,训练36批次的mAP_0.5、mAP_0.5:0.95、AR分别为0.921、0.696、0.753,相较于Faster R-CNN分别提升了12.4%、13.3%和14.7%,验证了该方法在提升目标检测精度和收敛速度方面的优越性。

关键词: 合成孔径雷达, 目标检测, DETR, 多尺度注意力

Abstract: Aiming at the slow convergence of DETR (detection transformer) in ship detection of SAR (synthetic aperture radar) images and easy omission of small and dim targets, an improved DETR based on multi-scale attention module and tag countermeasure training is proposed in this paper. The backbone network is used to extract the multi-scale feature map, construct the multi-scale attention weight matrix and feature map region sampling mode, and effectively improve the detection capability of DETR. A label antagonism training module is designed in the decoder structure to solve the repeated prediction of the target, suppress the confusion of the target preselection frame, and greatly accelerate the convergence of the model. The algorithm is tested on the HRSID dataset. The results show that mAP_0.5, mAP_0.5:0.95 and AR of 36 batches of training are 0.921, 0.696 and 0.753, respectively, which are improved by 12.4%, 13.3% and 14.7% compared with Faster R-CNN. The superiority of the proposed method in improving target detection accuracy and convergence speed is verified.

Key words: synthetic aperture radar, target detection, DETR, multi-scale attention