[1] CUI Y, ZHOU G Y, YANG J, et al. On the iterative censoring for target detection in SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2011, 8(4): 641-645.
[2] DAI H, DU L, WANG Y, et al. A modified CFAR algorithm based on object proposals for ship target detection in SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(12): 1925-1929.
[3] PAPPAS O, ACHIM A, BULL D. Superpixel-level CFAR detectors for ship detection in SAR imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(9): 1397-1401.
[4] GAO F, MA F, WANG J, et al. Visual saliency modeling for river detection in high-resolution SAR imagery[J]. IEEE Access, 2017, 6: 1000-1014.
[5] ZHAO Y, ZHAO L J, XIONG B L, et al. Attention receptive pyramid network for ship detection in SAR images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 2738-2756.
[6] 刘俊明, 孟卫华. 基于深度学习的单阶段目标检测算法研究综述[J]. 航空兵器, 2020, 27(3): 44-53.
LIU J M, MENG W H. Review on single-stage object detection algorithm based on deep learning[J]. Aero Weaponry, 2020, 27(3): 44-53.
[7] SUN Z Z, DAI M C, LENG X G, et al. An anchor-free detection method for ship targets in high-resolution SAR images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 7799-7816.
[8] ZHOU Y, JIANG X, XU G Z, et al. PVT-SAR: an arbitrarily oriented SAR ship detector with pyramid vision transformer[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16: 291-305.
[9] XU X W, ZHANG X L, ZHANG T W. Lite-YOLOv5: a lightweight deep learning detector for on-board ship detection in large-scene sentinel-1 SAR images[J]. Remote Sensing, 2022, 14(4): 1018.
[10] 宋泰年, 秦伟伟, 梁卓, 等. 面向轻量化网络的改进双通道注意力机制图像分类方法[J]. 航空兵器, 2021, 28(5): 81-85.
SONG T N, QIN W W, LIANG Z, et al. Improved dual-channel attention mechanism image classification method for lightweight network[J]. Aero Weaponry, 2021, 28(5): 81-85.
[11] 谭显东, 彭辉. 改进YOLOv5的SAR图像舰船目标检测[J]. 计算机工程与应用, 2022, 58(4): 247-254.
TAN X D, PENG H. Improved YOLOv5 ship target detection in SAR image[J]. Computer Engineering and Applications, 2022, 58(4): 247-254.
[12] 秦伟伟, 宋泰年, 刘洁瑜, 等. 基于轻量化YOLOv3的遥感军事目标检测算法[J]. 计算机工程与应用, 2021, 57(21): 263-269.
QIN W W, SONG T N, LIU J Y, et al. Remote sensing military target detection algorithm based on lightweight YOLOv3[J]. Computer Engineering and Applications, 2021, 57(21): 263-269.
[13] ZHENG Q H, TIAN X Y, YU Z G, et al. MobileRaT: a lightweight radio transformer method for automatic modulation classification in drone communication systems[J]. Drones, 2023, 7(10): 596.
[14] ZHENG Q H, SAPONARA S, TIAN X Y, et al. A real-time constellation image classification method of wireless communication signals based on the lightweight network MobileViT[J]. Cognitive Neurodynamics, 2024, 18(2): 659-671.
[15] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]//Proceedings of the 16th European Conference on Computer Vision. Cham: Springer, 2020: 213-229.
[16] NEUBECK A, VAN GOOL L. Efficient non-maximum suppression[C]//Proceedings of the 18th International Conference on Pattern Recognition. Piscataway: IEEE, 2006: 850-855.
[17] 李柯泉, 陈燕, 刘佳晨, 等. 基于深度学习的目标检测算法综述[J]. 计算机工程, 2022, 48(7): 1-12.
LI K Q, CHEN Y, LIU J C, et al. Survey of deep learning-based object detection algorithms[J]. Computer Engineering, 2022, 48(7): 1-12.
[18] LI F, ZHANG H, LIU S L, et al. DN-DETR: accelerate DETR training by introducing query denoising[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(4): 2239-2251.
[19] LIU S L, LI F, ZHANG H, et al. DAB-DETR: dynamic anchor boxes are better queries for DETR[C]//Proceedings of the 2021 International Conference on Learning Representations, 2021.
[20] ZHANG H, LI F, LIU S L, et al. DINO: DETR with improved denoising anchor boxes for end-to-end object detection[J]. arXiv:2203.03605, 2022.
[21] WEI S J, ZENG X F, QU Q Z, et al. HRSID: a high-resolution SAR images dataset for ship detection and instance segmentation[J]. IEEE Access, 2020, 8: 120234-120254.
[22] TIAN Z, SHEN C H, CHEN H, et al. FCOS: fully convolutional one-stage object detection[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 9627-9636.
[23] LAW H, DENG J. CornerNet: detecting objects as paired keypoints[C]//Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 765-781.
[24] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[25] LI F, ZENG A L, LIU S L, et al. Lite DETR: an interleaved multi-scale encoder for efficient DETR[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 18558-18567.
[26] ZHENG D H, DONG W H, HU H L, et al. Less is more: focus attention for efficient DETR[C]//Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 6651-6660. |