[1] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[J]. arXiv:1311.2524, 2013.
[2] GIRSHICK R. Fast R-CNN[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 1440-1448.
[3] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[4] HE K, GKIOXARI G, DOLLáR P, et al. Mask R-CNN[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2980-2988.
[5] UIJLINGS J R R, VAN DE SANDE K E A, GEVERS T, et al. Selective search for object recognition[J]. International Journal of Computer Vision, 2013, 104(2): 154-171.
[6] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer, 2016: 21-37.
[7] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 779-788.
[8] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2999-3007.
[9] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[10] BOCHKOVSKIY A, WANG C Y, LIAO H M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv:2004. 10934, 2020.
[11] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 936-944.
[12] LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 8759-8768.
[13] DONG X, YAN S, DUAN C. A lightweight vehicles detection network model based on YOLOv5[J]. Engineering Applications of Artificial Intelligence, 2022, 113: 104914.
[14] 张陶宁, 陈恩庆, 肖文福. 一种改进MobileNet_YOLOv3网络的快速目标检测方法[J]. 小型微型计算机系统, 2021, 42(5): 1008-1014.
ZHANG T N, CHEN E Q, XIAO W F. Fast target detection method for improving MobileNet_YOLOv3 network[J]. Journal of Chinese Computer Systems, 2021, 42(5): 1008-1014.
[15] 蔡哲栋, 应娜, 郭春生, 等. YOLOv3剪枝模型的多人姿态估计[J]. 中国图象图形学报, 2021, 26(4): 837-846.
CAI Z D, YING N, GUO C S, et al. Research on multiperson pose estimation combined with YOLOv3 pruning model[J]. Journal of Image and Graphics, 2021, 26(4): 837-846.
[16] 李汉冰, 徐春阳, 胡超超. 基于YOLOV3改进的实时车辆检测方法[J]. 激光与光电子学进展, 2020, 57(10): 332-338.
LI H B, XU C Y, HU C C. Improved real-time vehicle detection method based on YOLOV3[J]. Laser & Optoelectronics Progress, 2020, 57(10): 332-338.
[17] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer, 2018: 3-19.
[18] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141.
[19] WANG Q, WU B, ZHU P, et al. ECA-net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 11531-11539.
[20] HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 13708-13717.
[21] 毛力, 张艺楠, 孙俊. 融合注意力与时域多尺度卷积的手势识别算法[J]. 计算机应用研究, 2022, 39(7): 2196-2202.
MAO L, ZHANG Y N, SUN J. Gesture recognition algorithm combining attention and time-domain multiscale convolution[J]. Application Research of Computers, 2022, 39(7): 2196-2202.
[22] PADILLA R, NETTO S L, DA SILVA E A B. A survey on performance metrics for object-detection algorithms[C]//Proceedings of the 2020 International Conference on Systems, Signals and Image Processing. Piscataway: IEEE, 2020: 237-242.
[23] SANCHEZ S A, ROMERO H J, MORALES A D. A review: comparison of performance metrics of pretrained models for object detection using the TensorFlow framework[J]. IOP Conference Series: Materials Science and Engineering, 2020, 844: 012024. |