[1] 卢振坤, 刘胜, 钟乐, 等. 人群计数研究综述[J]. 计算机工程与应用, 2022, 58(11): 33-46.
LU Z K, LIU S, ZHONG L, et al. Survey on reaserch of crowd counting[J]. Computer Engineering and Applications, 2022, 58(11): 33-46.
[2] 朱宇斌, 李文根, 关佶红, 等. 一种面向人群计数的卷积注意力网络模型[J]. 计算机工程与应用, 2023, 59(1): 156-161.
ZHU Y B, LI W G, GUAN J H, et al. Convolutional attention network for crowd counting[J]. Computer Engineering and Applications, 2023, 59(1): 156-161.
[3] 韩文静, 何宁, 刘圣杰, 等. 基于改进ResNet-CrowdDet的密集行人检测算法[J]. 计算机工程与应用, 2023, 59(16): 196-204.
HAN W J, HE N, LIU S J, et al. Dense pedestrian detection algorithm based on improved ResNet-CrowdDet[J]. Computer Engineering and Applications, 2023, 59(16): 196-204.
[4] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 580-587.
[5] GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 1440-1448.
[6] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 779-788.
[7] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: Transformers for image recognition at scale[J]. arXiv:2010.11929, 2020.
[8] LIU Z, LIN Y T, CAO Y, et al. Swin Transformer: hierarchical vision Transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 9992-10002.
[9] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[10] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer International Publishing, 2020: 213-229.
[11] SUN P Z, ZHANG R F, JIANG Y, et al. Sparse R-CNN: end-to-end object detection with learnable proposals[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 14449-14458.
[12] LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 936-944.
[13] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer International Publishing, 2016: 21-37.
[14] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2999-3007.
[15] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv:1409.
1556, 2014.
[16] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778.
[17] ZHANG S L, WANG X J, WANG J Q, et al. Dense distinct query for end-to-end object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 7329-7338.
[18] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 3431-3440.
[19] WANG Y, WU Y, TANG S, et al. Hulk: a universal knowledge translator for human-centric tasks[J]. arXiv:2312.01697, 2023.
[20] ZHAO H, GALLO O, FROSIO I, et al. Loss functions for image restoration with neural networks[J]. IEEE Transactions on Computational Imaging, 2017, 3(1): 47-57.
[21] REZATOFIGHI H, TSOI N, GWAK J, et al. Generalized intersection over union: a metric and a loss for bounding box regression[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 658-666.
[22] SHAO S, ZHAO Z, LI B, et al. CrowdHuman: a benchmark for detecting human in a crowd[J]. arXiv:1805.00123, 2018.
[23] ZHANG S S, BENENSON R, SCHIELE B. CityPersons: a diverse dataset for pedestrian detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 4457-4465.
[24] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer International Publishing, 2014: 740-755.
[25] XU H H, WANG X Q, WANG D, et al. Object detection in crowded scenes via joint prediction[J]. Defence Technology, 2023, 21: 103-115.
[26] LIU S T, HUANG D, WANG Y H. Adaptive NMS: refining pedestrian detection in a crowd[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 6452-6461.
[27] CAI Z W, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 6154-6162.
[28] TIAN Z, SHEN C H, CHEN H, et al. FCOS: fully convolutional one-stage object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 9626-9635.
[29] ZHU X, SU W, LU L, et al. Deformable DETR: deformable Transformers for end-to-end object detection[J]. arXiv:2010. 04159, 2020.
[30] 肖振久, 李思琦, 曲海成. 基于多尺度特征与互监督的拥挤行人检测[J]. 计算机工程与科学, 2024, 46(7): 1278-1285.
XIAO Z J, LI S Q, QU H C. Pedestrian detection based on multi-scale features and mutual supervision[J]. Computer Engineering & Science, 2024, 46(7): 1278-1285.
[31] ZHANG G L, DU Z X, LU W J, et al. Dense pedestrian detection based on YOLO-v4 network reconstruction and CIoU loss optimization[J]. Journal of Physics: Conference Series, 2022, 2171(1): 012019.
[32] ZHANG S F, CHI C, YAO Y Q, et al. Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 9756-9765.
[33] CHU X G, ZHENG A L, ZHANG X Y, et al. Detection in crowded scenes: one proposal, multiple predictions[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 12211-12220.
[34] HUANG X, GE Z, JIE Z Q, et al. NMS by representative region: towards crowded pedestrian detection by proposal pairing[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 10747-10756. |