[1] 苑玉彬, 吴一全, 赵朗月, 等. 基于深度学习的无人机航拍视频多目标检测与跟踪研究进展[J]. 航空学报, 2023, 44(18): 028334.
YUAN Y B, WU Y Q, ZHAO L Y, et al. Research progress of UAV aerial video multi-object detection and tracking based on deep learning[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(18): 028334.
[2] 胡倩, 皮建勇, 胡伟超, 等. 基于改进YOLOv5的密集行人检测算法[J]. 计算机工程, 2025, 51(3): 216-228.
HU Q, PI J Y, HU W C, et al. Dense pedestrian detection algorithm based on improved YOLOv5[J]. Computer Engineering, 2025, 51(3): 216-228.
[3] RASOULI A, ROHANI M, LUO J. Bifold and semantic reasoning for pedestrian behavior prediction[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 15580-15590.
[4] HAM J S, KIM D H, JUNG N, et al. CIPF: crossing intention prediction network based on feature fusion modules for improving pedestrian safety[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2023: 3666-3675.
[5] GESNOUIN J, PECHBERTI S, STANCIULCSCU B, et al. TrouSPI-Net: spatio-temporal attention on parallel atrous convolutions and U-GRUs for skeletal pedestrian crossing prediction[C]//Proceedings of the 2021 16th IEEE International Conference on Automatic Face and Gesture Recognition. Piscataway: IEEE, 2021: 1-7.
[6] MUDULI K, SAHU V, GHOSH I. Predicting pedestrian movement in unsignalized crossings: a contextual cue-based approach[C]//Proceedings of the 2024 16th International Conference on Communication Systems & Networks. Piscataway: IEEE, 2024: 204-209.
[7] 罗朝阳, 张荣芬, 刘宇红, 等. 自动驾驶场景下的行人意图语义VSLAM[J]. 计算机工程与应用, 2024, 60(17): 107-116.
LUO Z Y, ZHANG R F, LIU Y H, et al. Pedestrian intent semantic VSLAM in automatic driving scenarios[J]. Computer Engineering and Applications, 2024, 60(17): 107-116.
[8] 桑海峰, 刘玉龙, 刘泉恺. 基于混合注意力机制的多信息行人过街意图预测[J]. 控制与决策, 2024, 39(12): 3946-3954.
SANG H F, LIU Y L, LIU Q K. Multi information pedestrian crossing intention prediction based on mixed attention mechanism[J]. Control and Decision, 2024, 39(12): 3946-3954.
[9] LING Y C, MA Z L, ZHANG Q, et al. PedAST-GCN: fast pedestrian crossing intention prediction using spatial-temporal attention graph convolution networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(10): 13277-13290.
[10] YANG B, ZHU J R, HU C, et al. Faster pedestrian crossing intention prediction based on efficient fusion of diverse intention influencing factors[J]. IEEE Transactions on Transportation Electrification, 2024, 10(4): 9071-9087.
[11] YANG B, WEI Z W, HU H Y, et al. DPCIAN: a novel dual-channel pedestrian crossing intention anticipation network[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(6): 6023-6034.
[12] CADENA P R G, QIAN Y Q, WANG C X, et al. Pedestrian graph: a fast pedestrian crossing prediction model based on graph convolutional networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(11): 21050-21061.
[13] ZHU D Y, ZHANG Z W, CUI P, et al. Robust graph convolutional networks against adversarial attacks[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2019: 1399-1407.
[14] PERDANA M I, ANGGRAENI W, SIDHARTA H A, et al. Early warning pedestrian crossing intention from its head gesture using head pose estimation[C]//Proceedings of the 2021 International Seminar on Intelligent Technology and Its Applications. Piscataway: IEEE, 2021: 402-407.
[15] ZHOU Y J, GREGSON J. WHENet: real-time fine-grained estimation for wide range head pose[J]. arXiv:2005.10353, 2020.
[16] YURTKULU S C, ?AHIN Y H, UNAL G. Semantic segmentation with extended DeepLabv3 architecture[C]//Proceedings of the 2019 27th Signal Processing and Communications Applications Conference. Piscataway: IEEE, 2019: 1-4.
[17] CORDTS M, OMRAN M, RAMOS S, et al. The cityscapes dataset for semantic urban scene understanding[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 3213-3223.
[18] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv:1409. 1556, 2014.
[19] SHI X J, CHEN Z R, WANG H, et al. Convolutional LSTM network: a machine learning approach for precipitation nowcasting[C]//Proceedings of the Neural Information Processing Systems, 2015
[20] DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]//Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2009: 248-255.
[21] SAK H, SENIOR A, BEAUFAYS F. Long short-term memory recurrent neural network architectures for large scale acoustic modeling[C]//Proceedings of the Interspeech 2014, 2014: 338-342.
[22] BRAKEL P, STROOBANDT D, SCHRAUWEN B. Bidirectional truncated recurrent neural networks for efficient speech denoising[C]//Proceedings of the Interspeech 2013, 2013: 2973-2977.
[23] KOTSERUBA I, RASOULI A, TSOTSOS J K. Do they want to cross? understanding pedestrian intention for behavior prediction[C]//Proceedings of the 2020 IEEE Intelligent Vehicles Symposium. Piscataway: IEEE, 2020: 1688-1693.
[24] RASOULI A, KOTSERUBA I, KUNIC T, et al. PIE: a large-scale dataset and models for pedestrian intention estimation and trajectory prediction[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 6261-6270.
[25] KOTSERUBA I, RASOULI A, TSOTSOS J K. Benchmark for evaluating pedestrian action prediction[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2021: 1258-1268.
[26] NG J Y, HAUSKNECHT M, VIJAYANARASIMHAN S, et al. Beyond short snippets: deep networks for video classification[J]. arXiv:1503.08909, 2015.
[27] TRAN D, BOURDEV L, FERGUS R, et al. Learning spatiotemporal features with 3D convolutional networks[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2016: 4489-4497.
[28] KINGMA D P, BA J. Adam: a method for stochastic optimization[J]. arXiv:1412.6980, 2014.
[29] RASOULI A, KOTSERUBA I, TSOTSOS J K. Pedestrian action anticipation using contextual feature fusion in stacked RNNs[J]. arXiv:2005.06582, 2020.
[30] DU Y, WANG W, WANG L. Hierarchical recurrent neural network for skeleton based action recognition[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 1110-1118.
[31] SIMONYAN K, ZISSERMAN A. Two-stream convolutional networks for action recognition in videos[J]. arXiv:1406. 2199, 2014.
[32] BUCHMAN D, DROZDOV M, KRILAVI?IUS T, et al. Pedestrian and animal recognition using Doppler radar signature and deep learning[J]. Sensors, 2022, 22(9): 3456.
[33] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer, 2018: 3-19.
[34] 曹昊天, 施惠杰, 宋晓琳, 等. 基于多特征融合的行人意图以及行人轨迹预测方法研究[J]. 中国公路学报, 2022, 35(10): 308-318.
CAO H T, SHI H J, SONG X L, et al. Prediction of pedestrian intention and trajectory based on multi-feature fusion[J]. China Journal of Highway and Transport, 2022, 35(10): 308-318. |