[1] MGUNI D, JAFFERJEE T, CHEN H, et al. MANSA: learning fast and slow in multi-agent systems[C]//Proceedings of the 40th International Conference on Machine Learning, 2023: 24631-24658.
[2] CHU T S, WANG J, CODECA L, et al. Multi-agent deep reinforcement learning for large-scale traffic signal control[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(3): 1086-1095.
[3] HU S Y, ZHU F D, CHANG X J, et al. UPDeT: universal multi-agent reinforcement learning via policy decoupling with transformers[J]. arXiv:2101.08001, 2021.
[4] OROOJLOOY A, NAZARI M, HAJINEZHAD D, et al. AttendLight: universal attention-based reinforcement learning model for traffic signal control[J]. arXiv:2010.05772, 2020.
[5] ZANG X S, YAO H X, ZHENG G J, et al. MetaLight: value-based meta-reinforcement learning for traffic signal control[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 1153-1160.
[6] ZHANG H C, LIU C, ZHANG W N, et al. GeneraLight: impr-oving environment generalization of traffic signal control via meta reinforcement learning[C]//Proceedings of the 29th ACM International Conference on Information & Knowledge Management. New York: ACM, 2020: 1783-1792.
[7] WANG M, WU L B, LI M, et al. Meta-learning based spatial-temporal graph attention network for traffic signal control[J]. Knowledge-Based Systems, 2022, 250: 109166.
[8] WEI H, ZHENG G J, YAO H X, et al. IntelliLight: a reinforcement learning approach for intelligent traffic light control[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2018: 2496-2505.
[9] HAYDARI A, YILMAZ Y. Deep reinforcement learning for intelligent transportation systems: a survey[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(1): 11-32.
[10] RASHEED F, YAU K A, NOOR R M, et al. Deep reinforcement learning for traffic signal control: a review[J]. IEEE Access, 2020, 8: 208016-208044.
[11] XIONG Y H, ZHENG G J, XU K, et al. Learning traffic signal control from demonstrations[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management. New York: ACM, 2019: 2289-2292.
[12] CHEN C C, WEI H, XU N, et al. Toward a thousand lights: decentralized deep reinforcement learning for large-scale traffic signal control[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 3414-3421.
[13] WEI H, XU N, ZHANG H, et al. CoLight: learning network-level cooperation for traffic signal control[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management, 2019: 1913-1922.
[14] WEI H, CHEN C C, ZHENG G J, et al. PressLight: learning max pressure control to coordinate traffic signals in arterial network[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2019: 1290-1298.
[15] XU B Y, WANG Y W, WANG Z Z, et al. Hierarchically and cooperatively learning traffic signal control[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2021: 669-677.
[16] WU L B, WANG M, WU D, et al. DynSTGAT: dynamic spatial-temporal graph attention network for traffic signal control[J]. arXiv:2109.05491, 2021.
[17] ZENG Z. GraphLight: graph-based reinforcement learning for traffic signal control[C]//Proceedings of the IEEE 6th International Conference on Computer and Communication Systems. Piscataway: IEEE, 2021: 645-650.
[18] DEVAILLY F X, LAROCQUE D, CHARLIN L. IG-RL: inductive graph reinforcement learning for massive-scale traffic signal control[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(7): 7496-7507.
[19] ZHAO W P, YE Y T, DING J P, et al. IPDALight: intensity- and phase duration-aware traffic signal control based on Reinforcement Learning[J]. Journal of Systems Architecture, 2022, 123: 102374.
[20] WANG Y N, XU T, NIU X, et al. STMARL: a spatio-temporal multi-agent reinforcement learning approach for cooperative traffic light control[J]. IEEE Transactions on Mobile Computing, 2022, 21(6): 2228-2242.
[21] SU H R, ZHONG Y D, DEY B, et al. EMVLight: a decentralized reinforcement learning framework for efficient passage of emergency vehicles[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2022 : 4593-4601.
[22] ZHENG G J, XIONG Y H, ZANG X S, et al. Learning phase competition for traffic signal control[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management. New York: ACM, 2019: 1963-1972.
[23] WEI H, ZHENG G, GAYAH V, et al. A survey on traffic signal control methods[J]. arXiv:1904.08117, 2019.
[24] KUBA G, WEN M, MENG L, et al. Settling the variance of multi-agent policy gradients[C]//Advances in Neural Information Processing Systems, 2021: 13458-13470.
[25] ZHENG W Q, GUO Q Q, YANG H, et al. Delayed propagation transformer: a universal computation engine towards practical control in cyber-physical systems[J]. arXiv:2110. 15926, 2021.
[26] TANG Y J, HA D R. The sensory neuron as a transformer: permutation-invariant neural networks for reinforcement lear-ning[J]. arXiv:2109.02869, 2021.
[27] CHEN L L, LU K, RAJESWARAN A, et al. Decision Transformer: reinforcement learning via sequence modeling[J]. arXiv:2106.01345, 2021.
[28] ALCORN M A, NGUYEN A. baller2vec++: a look-ahead multi-entity transformer for modeling coordinated agents[J]. arXiv:2104.11980, 2021.
[29] ZHENG Q, ZHANG A, GROVER A. Online decision transformer[J]. arXiv:2202.05607, 2022.
[30] WEN M N, KUBA J, LIN R J, et al. Multi-agent reinforcement learning is a sequence modeling problem[J]. arXiv:2205. 14953, 2022.
[31] ZHANG H C, FENG S Y, LIU C, et al. CityFlow: a multi-agent reinforcement learning environment for large scale city traffic scenario[C]//Proceedings of the World Wide Web Conference. New York: ACM, 2019: 3620-3624.
[32] MEI H, LEI X, DA L, et al. LibSignal: an open library for traffic signal control[J]. arXiv:2211.10649, 2022.
[33] WEI H, ZHENG G J, GAYAH V, et al. Recent advances in reinforcement learning for traffic signal control[J]. ACM SIGKDD Explorations Newsletter, 2021, 22(2): 12-18.
[34] LIANG E M, SU Z C, FANG C L, et al. OAM: an option-action reinforcement learning framework for universal multi-intersection control[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2022: 4550-4558.
[35] ZHENG G, ZANG X, XU N, et al. Diagnosing reinforcement learning for traffic signal control[J]. arXiv:1905.04716, 2019. |