计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (18): 317-325.DOI: 10.3778/j.issn.1002-8331.2410-0186

• 工程与应用 • 上一篇    下一篇

基于改进DDPG的机械臂6D抓取方法研究

张盛,沈捷,曹恺,戴辉帅,李涛   

  1. 1.南京工业大学 电气工程与控制科学学院,南京 211816 
    2.南京航空航天大学 自动化学院,南京 210016
  • 出版日期:2025-09-15 发布日期:2025-09-15

Research on 6D Robotic Arm Grasping Method Based on Improved DDPG

ZHANG Sheng, SHEN Jie, CAO Kai, DAI Huishuai, LI Tao   

  1. 1.College of Electrical Engineering and Control Science, Nanjing Tech University, Nanjing 211816, China
    2.College of Automation, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
  • Online:2025-09-15 Published:2025-09-15

摘要: 在当前基于深度强化学习的机械臂6D抓取任务中,存在抓取位姿欠佳导致抓取成功率和鲁棒性不足的问题。为了解决此问题,提出一种融合位姿评价机制的改进DDPG算法。该算法在DDPG框架的基础上,引入抓取评估网络对机械臂的抓取位姿进行量化评估。依据评估分数为机械臂抓取的动作分配多级奖励值,以此判断抓取位姿的质量,引导DDPG朝着优化抓取位姿的方向进行学习。通过在仿真和实物环境下进行实验,结果表明该方法可以有效改进机械臂的抓取位姿,提升机械臂的抓取成功率。此外,该方法可以较好地迁移到现实场景中,增强机械臂的泛化性和鲁棒性。

关键词: 深度确定性策略梯度算法, 机械臂, 6D抓取, 深度强化学习, 抓取评估

Abstract: In current 6D robotic grasping tasks based on deep reinforcement learning, suboptimal grasping poses often lead to insufficient grasping success rates and robustness. To address this issue, an improved DDPG algorithm incorporating a pose evaluation mechanism is proposed. Building upon the DDPG framework,the algorithm introduces a grasp evaluation network to quantitatively assess the grasping poses of the robotic manipulator. Based on the evaluation scores, multi-level reward values are assigned to the grasping actions, enabling the assessment of pose quality and guiding the DDPG to optimize grasping poses. Experiments conducted in both simulation and physical environments demonstrate that the proposed method effectively improves the grasping poses of the robotic manipulator and enhances the grasping success rate. Furthermore, the method exhibits strong adaptability to real-world scenarios,significantly improving the generalization capability and robustness of the robotic manipulator.

Key words: deep deterministic policy gradient (DDPG), robotic manipulator, 6D grasping, deep reinforcement learning, grasp evaluation