[1] 崔展齐, 杨慧文, 陈翔, 等. 智能合约安全漏洞检测研究进展[J]. 软件学报, 2024, 35(5): 2235-2267.
CUI Z Q, YANG H W, CHEN X, et al. Research progress of security vulnerability detection of smart contracts[J]. Journal of Software, 2024, 35(5): 2235-2267.
[2] 董伟良, 刘哲, 刘逵, 等. 智能合约漏洞检测技术综述[J]. 软件学报, 2024, 35(1): 38-62.
DONG W L, LIU Z, LIU K, et al. Survey on vulnerability detection technology of smart contracts[J]. Journal of Software, 2024, 35(1): 38-62.
[3] LUTZ O, CHEN H L, FEREIDOONI H, et al. ESCORT: Ethereum smart contracts vulnerability detection using deep neural network and transfer learning[J]. arXiv:2103.12607, 2021.
[4] QIAN P, LIU Z G, HE Q M, et al. Towards automated reentrancy detection for smart contracts based on sequential models[J]. IEEE Access, 2020, 8: 19685-19695.
[5] 吴雨芯, 蔡婷, 张大斌. 基于层级注意力机制与双向长短期记忆神经网络的智能合约自动分类模型[J]. 计算机应用, 2020, 40(4): 978-984.
WU Y X, CAI T, ZHANG D B. Automatic smart contract classification model based on hierarchical attention mechanism and bidirectional long short-term memory neural network[J]. Journal of Computer Applications, 2020, 40(4): 978-984.
[6] LUU L, CHU D H, OLICKEL H, et al. Making smart contracts smarter[C]//Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2016: 254-269.
[7] KALRA S, GOEL S, DHAWAN M, et al. ZEUS: analyzing safety of smart contracts[C]//Proceedings of the 2018 Network and Distributed System Security Symposium, 2018.
[8] TSANKOV P, DAN A, DRACHSLER-COHEN D, et al. Securify: practical security analysis of smart contracts[C]//Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. New York: ACM, 2018: 67-82.
[9] NIKOLIC I, KOLLURI A, SERGEY I, et al. Finding the greedy, prodigal, and suicidal contracts at scale[C]//Proceedings of the 34th Annual Computer Security Applications Conference, 2018: 653-663.
[10] JIANG B, LIU Y, CHAN W K. ContractFuzzer: fuzzing smart contracts for vulnerability detection[C]//Proceedings of the 33rd ACM/IEEE International Conference on Automated Software Engineering. New York: ACM, 2018: 259-269.
[11] TORRES C F, IANNILLO A K, GERVAIS A, et al. ConFuzzius: a data dependency-aware hybrid fuzzer for smart contracts[C]//Proceedings of the 2021 IEEE European Symposium on Security and Privacy. Piscataway: IEEE, 2021: 103-119.
[12] BHARGAVAN K, DELIGNAT-LAVAUD A, FOURNET C, et al. Formal verification of smart contracts: short paper[C]//Proceedings of the 2016 ACM Workshop on Programming Languages and Analysis for Security. New York: ACM, 2016: 91-96.
[13] GRISHCHENKO I, MAFFEI M, SCHNEIDEWIND C. A semantic framework for the security analysis of Ethereum smart contracts[C]//Proceedings of the 7th International Conference on Principles of Security and Trust. Cham: Springer, 2018: 243-269.
[14] HIRAI Y. Defining the Ethereum virtual machine for interactive theorem provers[C]//Proceedings of the 2017 International Workshops on Financial Cryptography and Data Security. Cham: Springer, 2017: 520-535.
[15] TORRES C F, SCHüTTE J, STATE R. Osiris: hunting for integer bugs in Ethereum smart contracts[C]//Proceedings of the 34th Annual Computer Security Applications Conference. New York: ACM, 2018: 664-676.
[16] SUN X B, TU L Q, ZHANG J L, et al. ASSBert: active and semi-supervised bert for smart contract vulnerability detection[J]. Journal of Information Security and Applications, 2023, 73: 103423.
[17] JEON S, LEE G, KIM H, et al. SmartConDetect: highly accurate smart contract code vulnerability detection mechanism using BERT[C]//Proceedings of the 2021 KDD Workshop on Programming Language Processing, 2021.
[18] HAN D J, LI Q Y, ZHANG L, et al. A smart contract vulnerability detection model based on syntactic and semantic fusion learning[J]. Wireless Communications and Mobile Computing, 2023(1): 9212269.
[19] 林彦君, 张龑. 基于语义与结构特征融合的整数溢出漏洞检测[J]. 湖北大学学报 (自然科学版), 2024, 46(4): 531-539.
LIN Y J, ZHANG Y. Integer overflow vulnerability detection based on the fusion of semantics and structural features[J]. Journal of Hubei University (Natural Science), 2024, 46(4): 531-539.
[20] WU H J, ZHANG Z, WANG S W, et al. Peculiar: smart contract vulnerability detection based on crucial data flow graph and pre-training techniques[C]//Proceedings of the 2021 IEEE 32nd International Symposium on Software Reliability Engineering. Piscataway: IEEE, 2021: 378-389.
[21] GUO D Y, REN S, LU S, et al. GraphCodeBERT: pre-training code representations with data flow[J]. arXiv:2009.08366, 2020.
[22] CAI J, LI B, ZHANG J L, et al. Combine sliced joint graph with graph neural networks for smart contract vulnerability detection[J]. Journal of Systems and Software, 2023, 195: 111550.
[23] LIU Z G, QIAN P, WANG X, et al. Smart contract vulnerability detection: from pure neural network to interpretable graph feature and expert pattern fusion[J]. arXiv:2106.09282, 2021.
[24] LIU Z G, QIAN P, WANG X Y, et al. Combining graph neural networks with expert knowledge for smart contract vulnerability detection[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(2): 1296-1310.
[25] HAN K, XIAO A, WU E, et al. Transformer in transformer[C]//Advances in Neural Information Processing Systems 34, 2021: 15908-15919.
[26] RAVI V, ALAZAB M, SELVAGANAPATHY S, et al. A multi-view attention-based deep learning framework for malware detection in smart healthcare systems[J]. Computer Communications, 2022, 195: 73-81.
[27] DAO T V, SATO H, KUBO M. An attention mechanism for combination of CNN and VAE for image-based malware classification[J]. IEEE Access, 2022, 10: 85127-85136.
[28] LUO F, LUO R J, CHEN T, et al. SCVHunter: smart contract vulnerability detection based on heterogeneous graph attention network[C]//Proceedings of the IEEE/ACM 46th International Conference on Software Engineering. New York: ACM, 2024: 954.
[29] REN X J, WU Y T, LI J Q, et al. Smart contract vulnerability detection based on a semantic code structure and a self-designed neural network[J]. Computers and Electrical Engineering, 2023, 109: 108766.
[30] FERREIRA J F, CRUZ P, DURIEUX T, et al. SmartBugs: a framework to analyze solidity smart contracts[C]//Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering. New York: ACM, 2020: 1349-1352.
[31] HU J L, CAO L J, LI T H, et al. GAT-LI: a graph attention network based learning and interpreting method for functional brain network classification[J]. BMC Bioinformatics, 2021, 22(1): 379.
[32] ABU E H S, KAPOOR A, PEROZZI B, et al. N-GCN: multi-scale graph convolution for semi-supervised node classification[C]//Proceedings of the 35th Conference on Uncertainty in Artificial Intelligence, 2019: 841-851.
[33] LI Z F, ZHAO Y, ZHANG Y, et al. Multi-relational graph attention networks for knowledge graph completion[J]. Knowledge-Based Systems, 2022, 251: 109262.
[34] GHAFFARIAN S M, SHAHRIARI H R. Neural software vulnerability analysis using rich intermediate graph representations of programs[J]. Information Sciences, 2021, 553: 189-207.
[35] CAI H Y, ZHENG V W, CHANG K C. A comprehensive survey of graph embedding: problems, techniques, and applications[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 30(9): 1616-1637.
[36] ZHUANG Y, LIU Z G, QIAN P, et al. Smart contract vulnerability detection using graph neural network[C]//Proceedings of the 29th International Joint Conference on Artificial Intelligence, 2020: 3283-3290. |