[1] 彭红超, 祝智庭. 面向智慧课堂的灵活深度学习支架设计研究[J]. 中国电化教育, 2023, 435(4): 23-31.
PENG H C, ZHU Z T. A design research on the scaffolds of flexible deep learning for smart classroom[J]. China Educational Technology, 2023, 435(4): 23-31.
[2] 桑高丽, 肖述笛, 赵启军. 联合软阈值去噪和视频数据融合的低质量3维人脸识别[J]. 中国图象图形学报, 2023, 28(5): 1434-1444.
SANG G L, XIAO S D, ZHAO Q J. Soft threshold denoising and video data fusion-relevant low-quality 3D face recognition[J]. Journal of Image and Graphics, 2023, 28(5): 1434-1444.
[3] CANAL F Z, MüLLER T R, MATIAS J C, et al. A survey on facial emotion recognition techniques: a state-of-the-art literature review[J]. Information Sciences, 2022, 582: 593-617.
[4] KUMAR A, KAUR A, KUMAR M. Face detection techniques: a review[J]. Artificial Intelligence Review, 2019, 52: 927-948.
[5] 巢渊, 刘文汇, 唐寒冰, 等. 基于改进YOLO-v4的室内人脸快速检测方法[J]. 计算机工程与应用, 2022, 58(14): 105-113.
CHAO Y, LIU W H, TANG H B, et al. Fast indoor face detection method based on improved YOLO-v4[J]. Computer Engineering and Applications, 2022, 58(14): 105-113.
[6] NSARI M F, LODI K A. A survey of recent trends in two stage object detection methods[J]. Renewable Power for Sustainable Growth, 2021, 723: 669-677.
[7] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.
[8] HE K, GKIOXARI G, DOLLáR P, et al. Mask R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2961-2969.
[9] ZHANG K, ZHANG Z, LI Z, et al. Joint face detection and alignment using multitask cascaded convolutional networks[J]. IEEE Signal Processing Letters, 2016, 23(10): 1499-1503.
[10] DAI L, CHEN H, LI Y, et al. TARDet: two-stage anchor-free rotating object detector in aerial images[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 4267-4275.
[11] GU M, LIU X, FENG J. Classroom face detection algorithm based on improved MTCNN[J]. Signal, Image and Video Processing, 2022, 16(5): 1355-1362.
[12] ZHANG Y F, LI X, WANG F Y, et al. A comprehensive review of one-stage networks for object detection[C]//Proceedings of the IEEE International Conference on Signal Processing, Communications and Computing, 2021: 1-6.
[13] LI C, LI L, JIANG H, et al. YOLOv6: a single-stage object detection framework for industrial applications[J]. arXiv:2209.
02976, 2022.
[14] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[J]. arXiv:2207.02696, 2022.
[15] DENG J, GUO J, VERVERAS E, et al. RetinaFace: single-shot multi-level face localisation in the wild[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 5203-5212.
[16] LI J, WANG Y, WANG C, et al. DSFD: dual shot face detector[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 5060-5069.
[17] QI D, TAN W, YAO Q, et al. YOLO5Face: why reinventing a face detector[C]//Proceedings of the European Conference on Computer Vision, 2023: 228-244.
[18] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: 6000-6010.
[19] KITAEV N, KAISER ?, LEVSKAYA A. Reformer: the efficient transformer[J]. arXiv:2001.04451, 2020.
[20] LI K, WANG Y, ZHANG J, et al. Uniformer: unifying convolution and self-attention for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(10): 12581-12600.
[21] LIU S, HUANG D. Receptive field block net for accurate and fast object detection[C]//Proceedings of the European Conference on Computer Vision, 2018: 385-400.
[22] WANG J, XU C, YANG W, et al. A normalized Gaussian Wasserstein distance for tiny object detection[J]. arXiv:2110.
13389, 2021.
[23] RAMACHANDRAN P, PARMAR N, VASWANI A, et al. Stand-alone self-attention in vision models[C]//Proceedings of the 33rd International Conference on Neural Information Processing Systems, 2019: 68-80.
[24] YANG S, LUO P, LOY C C, et al. Wider face: a face detection benchmark[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern recognition, 2016: 5525-5533.
[25] 王欣然, 田启川, 张东. 人脸口罩佩戴检测研究综述[J]. 计算机工程与应用, 2022, 58(10): 13-26.
WANG X R, TIAN Q C, ZHANG D. Review of research on face mask wearing detection[J]. Computer Engineering and Applications, 2022, 58(10): 13-26.
[26] GUO J, DENG J, LATTAS A, et al. Sample and computation redistribution for efficient face detection[J]. arXiv:2105.
04714, 2021.
[27] CHEN W, HUANG H, PENG S, et al. YOLO-face: a real-time face detector[J]. The Visual Computer, 2021, 37: 805-813. |