[1] LI, Y, HAN W, ZHENG H, et al. Deep learning-based safety helmet detection in engineering management based on convolutional neural networks[J]. Advances in Civil Engineering, 2020, 2020: 1-10.
[2] JIAO L C, ZHANG F, LIU F, et al. A survey of deep learning-based object detection[J]. IEEE Access, 2019, 7: 128837-128868.
[3] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision, Venice, 2017: 2980-2988.
[4] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, 2016: 779-788.
[5] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, 2017: 6517-6525.
[6] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[7] BOCHKOVSKIY A, WANG C, LIAO H M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv:2004.10934, 2020.
[8] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the European Conference on Computer Vision, 2016: 21-37.
[9] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, 2014: 580-587.
[10] GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, Santiago, 2015: 1440-1448.
[11] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39: 1137-1149.
[12] WANG X, NIU D, LUO P, et al. A safety helmet and protective clothing detection method based on improved-Yolo V 3[C]//Proceedings of the Chinese Automation Congress, Shanghai, 2020: 5437-5441.
[13] SONG H, ZHANG X, SONG J, et al. Detection and tracking of safety helmet based on DeepSort and YOLOv5[J]. Multimedia Tools and Applications, 2023, 82(7): 10781-10794.
[14] JIN Z, QU P Q, SUN C, et al. DWCA-YOLOv5: an improve single shot detector for safety helmet detection[J]. Journal of Sensors, 2021, 2021: 1-12.
[15] ZHANG Y J, XIAO F S, LU Z M. Helmet wearing state detection based on improved Yolov5s[J]. Sensors, 2022, 22(24): 9843.
[16] SUN C, ZHANG S, QU P, et al. MCA-YOLOV5-Light: a faster, stronger and lighter algorithm for helmet-wearing detection[J]. Applied Sciences, 2022, 12(19): 9697.
[17] 程换新, 蒋泽芹, 程力, 等. 基于改进YOLOX-S的安全帽反光衣检测算法[J]. 电子测量技术, 2022, 45(6): 130-135.
CHENG H X, JIANG Z Q, CHENG L, et al. Helmet and reflective clothing detection algorithm based on improved YOLOX-S[J]. Electronic Measurement Technology, 2022, 45(6): 130-135.
[18] HAN K, WANG, Y, TIAN Q, et al. GhostNet: more features from cheap operations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, 2020: 1577-1586.
[19] 李昂, 孙士杰, 张朝阳, 等. 改进YOLOv5s的轨道障碍物检测模型轻量化研究[J]. 计算机工程与应用, 2023, 59(4): 197-207.
LI A, SUN S J, ZHANG C Y, et al. Research on lightweight of improved YOLOv5 track obstacle detection model[J]. Computer Engineering and Applications, 2023, 59(4): 197-207.
[20] 邱天衡, 王玲, 王鹏, 等. 基于改进YOLOv5的目标检测算法研究[J]. 计算机工程与应用, 2022, 58(13): 63-73.
QIU T H, WANG L, WANG P, et al. Research on object detection algorithm based on improved YOLOv5[J]. Computer Engineering and Applications, 2022, 58(13): 63-73.
[21] HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, 2020: 13708-13717.
[22] PANG L, LI B, ZHANG F, et al. A lightweight YOLOv5-MNE algorithm for SAR ship detection[J]. Sensors, 2022, 22(18): 7088.
[23] 宋晓凤, 吴云军, 刘冰冰, 等. 改进YOLOv5s算法的安全帽佩戴检测[J]. 计算机工程与应用, 2023, 59(2): 194-201.
SONG X F, WANG Y J, LIU B B, et al. Improved YOLOv5s algorithm for helmet wearing detection[J]. Computer Engineering and Applications, 2023, 59(2): 194-201.
[24] WOO S, PARK J, LEE J, et al. CBAM: convolutional block attention module[C]//European Conference on Computer Vision, 2018: 3-19.
[25] 刘宜轩, 程志江, 吴动波, 等. 基于改进YOLOv5的航空发动机叶片表面缺陷检测方法研究[J]. 激光杂志, 2023, 44(7): 57-61.
LIU Y X, CHENG Z J, WU D B, et al. Research on surface defect detection method of aero-engine blade based on improved YOLOv5[J]. Laser Journal, 2023, 44(7): 57-61. |