[1] MAHAUR B, MISHRA K K, KUMAR A. An improved lightweight small object detection framework applied to real-time autonomous driving[J]. Expert Systems with Applications, 2023, 234: 121036.
[2] SUN W, DAI L, ZHANG X R, et al. RSOD: real-time small object detection algorithm in UAV-based traffic monitoring[J]. Applied Intelligence, 2022, 52(8): 8448-8463.
[3] 姜贸翔, 司占军, 王晓喆. 改进RT-DETR的无人机图像目标检测算法[J]. 计算机工程与应用, 2025, 61(1): 98-108.
JIANG M X, SI Z J, WANG X Z. Improved target detection algorithm for UAV images with RT-DETR[J]. Computer Engineering and Applications, 2025, 61(1): 98-108.
[4] 赵其昌, 吴一全, 苑玉彬. 光学遥感图像舰船目标检测与识别方法研究进展[J]. 航空学报, 2024, 45(8): 029025.
ZHAO Q C, WU Y Q, YUAN Y B. Progress of ship detection and recognition methods in optical remote sensing images[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(8): 029025.
[5] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 580-587.
[6] GIRSHICK R. Fast R-CNN[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 1440-1448.
[7] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(6): 1137-1149.
[8] HE K M, GKIOXARI G, DOLLáR P, et al. Mask R-CNN[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2980-2988.
[9] CAI Z W, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 6154-6162.
[10] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2999-3007.
[11] LI X, WANG W, WU L, et al. Generalized focal loss: learning qualified and distributed bounding boxes for dense object detection[C]//Advances in Neural Information Processing Systems, 2020: 21002-21012.
[12] FENG C J, ZHONG Y J, GAO Y, et al. TOOD: task-aligned one-stage object detection[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 3490-3499.
[13] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 779-788.
[14] 何湘杰, 宋晓宁. YOLOv4-Tiny的改进轻量级目标检测算法[J]. 计算机科学与探索, 2024, 18(1): 138-150.
HE X J, SONG X N. Improved YOLOv4-Tiny lightweight target detection algorithm[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 138-150.
[15] 王春梅, 刘欢. YOLOv8-VSC: 一种轻量级的带钢表面缺陷检测算法[J]. 计算机科学与探索, 2024, 18(1): 151-160.
WANG C M, LIU H. YOLOv8-VSC: lightweight algorithm for strip surface defect detection[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 151-160.
[16] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems, 2017.
[17] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer International Publishing, 2020: 213-229.
[18] ZHU X Z, SU W J, LU L W, et al. Deformable DETR: deformable transformers for end-to-end object detection[J]. arXiv:2010.04159, 2020.
[19] LIU S L, LI F, ZHANG H, et al. DAB-DETR: dynamic anchor boxes are better queries for DETR[J]. arXiv:2201.12329, 2022.
[20] ZHANG S L, WANG X J, WANG J Q, et al. Dense distinct query for end-to-end object detection[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 7329-7338.
[21] 胡佳乐, 周敏, 申飞. 面向无人机小目标的RTDETR改进检测算法[J]. 计算机工程与应用, 2024, 60(20): 198-206.
HU J L, ZHOU M, SHEN F. Improved detection algorithm of RTDETR for UAV small target[J]. Computer Engineering and Applications, 2024, 60(20): 198-206.
[22] ZHAO Y A, LV W Y, XU S L, et al. DETRs beat YOLOs on real-time object detection[C]//Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 16965-16974.
[23] ZHANG H, HAO C Y, SONG W R, et al. Adaptive slicing-aided hyper inference for small object detection in high-resolution remote sensing images[J]. Remote Sensing, 2023, 15(5): 1249.
[24] CAO Y R, HE Z J, WANG L J, et al. VisDrone-DET2021: the vision meets drone object detection challenge results[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision Workshops. Piscataway: IEEE, 2021: 2847-2854.
[25] GEIGER A, LENZ P, STILLER C, et al. Vision meets robotics: the KITTI dataset[J]. The International Journal of Robotics Research, 2013, 32(11): 1231-1237.
[26] 程旭, 宋晨, 史金钢, 等. 基于深度学习的通用目标检测研究综述[J]. 电子学报, 2021, 49(7): 1428-1438.
CHENG X, SONG C, SHI J G, et al. A survey of generic object detection methods based on deep learning[J]. Acta Electronica Sinica, 2021, 49(7): 1428-1438.
[27] ZOU Z X, CHEN K Y, SHI Z W, et al. Object detection in 20 years: a survey[J]. Proceedings of the IEEE, 2023, 111(3): 257-276.
[28] CHOLLET F. Xception: deep learning with depthwise separable convolutions[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 1800-1807.
[29] LI S, WANG Z, LIU Z, et al. MogaNet: multi-order gated aggregation network[J]. arXiv:2211.03295, 2022.
[30] WANG C Y, MARK LIAO H Y, WU Y H, et al. CSPNet: a new backbone that can enhance learning capability of CNN[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2020: 1571-1580.
[31] ZHANG T, LI L, ZHOU Y, et al. CAS-ViT: convolutional additive self-attention vision transformers for efficient mobile applications[J]. arXiv:2408.03703, 2024.
[32] LIU Q K, LIU R, ZHENG B L, et al. Infrared small target detection with scale and location sensitivity[C]//Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 17490-17499.
[33] MA S L, XU Y, MA S L, et al. MPDIoU: a loss for efficient and accurate bounding box regression[J]. arXiv:2307.07662, 2023.
[34] ZHANG H, XU C, ZHANG S J. Inner-IoU: more effective intersection over union loss with auxiliary bounding box[J]. arXiv:2311.02877, 2023.
[35] YU X H, GONG Y Q, JIANG N, et al. Scale match for tiny person detection[C]//Proceedings of the 2020 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2020: 1246-1254.
[36] XIA G S, BAI X, DING J, et al. DOTA: a large-scale dataset for object detection in aerial images[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 3974-3983.
[37] 韩佰轩, 彭月平, 郝鹤翔, 等. DMU-YOLO: 机载视觉的多类异常行为检测算法[J]. 计算机工程与应用, 2025, 61(7): 128-140.
HAN B X, PENG Y P, HAO H X, et al. DMU-YOLO: multi-class abnormal behavior detection algorithm based on air-borne vision[J]. Computer Engineering and Applications, 2025, 61(7): 128-140.
[38] HUANG S, LU Z, CUN X, et al. DEIM: DETR with improved matching for fast convergence[J]. arXiv:2412.04234, 2024.
[39] WANG C Y, YEH I H, MARK LIAO H Y. YOLOv9: learning what you want to learn using programmable gradient information[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer Nature Switzerland, 2024: 1-21.
[40] WANG A, CHEN H, LIU L, et al. YOLOv10: real-time end-to-end object detection[C]//Advances in Neural Information Processing Systems, 2024: 107984-108011.
[41] CHATTOPADHAY A, SARKAR A, HOWLADER P, et al. Grad-CAM: generalized gradient-based visual explanations for deep convolutional networks[C]//Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2018: 839-847.
[42] ZHENG Q H, SAPONARA S, TIAN X Y, et al. A real-time constellation image classification method of wireless communication signals based on the lightweight network Mobile-ViT[J]. Cognitive Neurodynamics, 2024, 18(2): 659-671.
[43] ZHENG Q H, TIAN X Y, YU Z G, et al. Robust automatic modulation classification using asymmetric trilinear attention net with noisy activation function[J]. Engineering Applications of Artificial Intelligence, 2025, 141: 109861. |