[1] 马宏伟. 煤矿机电装备智能化[J]. 西安科技大学学报, 2020, 40(5): 748.
MA H W. Intelligent coal mine electromechanical equipment[J]. Journal of Xi’an University of Science and Technology, 2020, 40(5): 748.
[2] ZENG Q L, ZHOU G Y, WAN L R, et al. Detection of coal and gangue based on improved YOLOv8[J]. Sensors, 2024, 24(4): 1246.
[3] BESSINGER S L, NELSON, M G Remnant roof coal thickness measurement with passive gamma ray instruments in coal mines[J]. IEEE Transactions on Industry Applications, 1993, 29(3): 562-565.
[4] 马宪民, 蒋勇, 卜祥莉. 基于图像处理的煤矸石自动分选系统的研究[C]//2003年中国智能自动化会议论文集(下册), 2003: 403-406.
MA X M, JIANG Y, PU X L. Study of automatic selection system of waste rock from coal bulk based on image pro-cessing[C]//Proceedings of the 2003 China Intelligent Automation Conference(Volume 2), 2003: 403-406.
[5] 薛祯也. 基于深度学习的煤矸石识别方法研究[D]. 西安: 西安科技大学, 2019.
XUE Z Y. Research on coal gangue identification based on deep learning[D]. Xi’an: Xi’an University of Science and Technology, 2019.
[6] 王莉, 于国防, 沈慧宇, 等. 基于CNN卷积神经网络的煤矸石自动分选研究[J]. 江苏建筑职业技术学院学报, 2019, 19(4): 35-39.
WANG L, YU G F, SHEN H Y, et al. Study onautomatic separation of coal gangue based on CNN convolutional neural network[J]. Jiangsu Vocational Institute of Architectural Technology, 2019, 19(4): 35-39.
[7] LV Z Q, WANG W D, XU Z Q, et al. Cascade network for detection of coal and gangue in the production context[J]. Powder Technology, 2021, 377: 361-371.
[8] DING Z H, CHEN G D, WANG Z, et al. A real-time multilevel fusion recognition system for coal and gangue based on near-infrared sensing[J]. IEEE Access, 2020, 8: 178722-178732.
[9] 吕旻姝. 基于深度学习的煤矸石图像识别研究[D]. 淮南: 安徽理工大学, 2021.
LV M S. Research on coal gangue image recognition based on deep learning[D]. Huainan: Anhui University of Science and Technology, 2021.
[10] 苏玲玲. 基于深度学习的煤矸石识别方法研究[D]. 西安: 西安科技大学, 2018.
SU L L. Research on coal gangue identification based on deep learning[D]. Xi’an: Xi’an University of Science and Technology, 2018.
[11] 赵学军, 李建. 一种基于深度学习的煤矸石检测方法[J]. 矿业科学学报, 2021, 6(6): 730-736.
ZHAO X J, LI J. A method of coal gangue detection based on deep learning[J]. Journal of Mining Science and Technology, 2021, 6(6): 730-736.
[12] LI M, HE X L, YUAN Y X, et al. Multiple factors influence coal and gangue image recognition method and experimental research based on deep learning[J]. International Journal of Coal Preparation and Utilization, 2023, 43(8): 1411-1427.
[13] XU S Y, ZHOU Y J, HUANG Y R, et al. YOLOv4-tiny-based coal gangue image recognition and FPGA implementation[J]. Micromachines, 2022, 13(11): 1983.
[14] 汝洪芳, 张冬冬. YOLOv5检测煤矸石的改进方法[J]. 黑龙江科技大学学报, 2021, 31(6): 818-823.
RU H F, ZHANG D D. Coal gangue detection method based on improved YOLOv5[J]. Journal of Heilongjiang University of Science and Technology, 2021, 31(6): 818-823.
[15] DONG C, LOY C C, HE K M, et al. Learning a deep convolutional network for image super-resolution[C]//Proceedings of the European Conference on Computer Vision. Cham: Spr-inger International Publishing, 2014: 184-199.
[16] SHI W Z, CABALLERO J, HUSZáR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 1874-1883.
[17] KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 1646-1654.
[18] KIM S, KANG I, KWAK N. Semantic sentence matching with densely-connected recurrent and co-attentive information[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2019: 6586-6593.
[19] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778.
[20] ZHANG Y L, TIAN Y P, KONG Y, et al. Residual dense network for image super-resolution[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 2472-2481.
[21] LEDIG C, THEIS L, HUSZáR F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 105-114.
[22] ZHANG K, LIANG J Y, VAN GOOL L, Designing a practical degradation model for deep blind image super-resolution[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2021: 4791-4800.
[23] WANG X T, YU K, WU S X, et al. ESRGAN: enhanced super-resolution generative adversarial networks[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer International Publishing, 2019: 63-79.
[24] JI H, GAO Z, MEI T C, et al. Vehicle detection in remote sensing images leveraging on simultaneous super-resolution[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 17(4): 676-680.
[25] RABBI J, RAY N, SCHUBERT M, et al. Small-object dete-ction in remote sensing images with end-to-end edge-enhanced GAN and object detector network[J]. Remote Sensing, 2020, 12(9): 1432.
[26] HE S T, ZOU H X, WANG Y Q, et al. ShipSRDet: an end-to-end remote sensing ship detector using super-resolved feature representation[C]//Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE, 2021: 3541-3544.
[27] 张天霖, 逄征, 陈红珍, 等. 面向舰船目标识别的遥感图像超分辨率重建[J]. 计算机工程与应用, 2024, 60(13): 190-199.
ZHANG T L, PANG Z, CHEN H Z, et al. Remote sensing image super-resolution reconstruction method for ship target recognition[J]. Computer Engineering and Applications, 2024, 60(13): 190-199.
[28] 王文瑾, 游子绎, 邵历江, 等. 融合超分辨率重建的YOLOv5松枯死木识别模型[J]. 农业工程学报, 2023, 39(5): 137-145.
WANG W J, YOU Z Y, SHAO L J, et al. Recognition of dead pine trees using YOLOv5 by super-resolution reconstruction[J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(5): 137-145.
[29] WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 7464-7475. |