计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (19): 92-105.DOI: 10.3778/j.issn.1002-8331.2412-0444

• 理论与研发 • 上一篇    下一篇

面向分层联邦学习框架的自适应异步聚合算法

徐飞,申奥祥,赵毅恒,邓岩,宁辛,王星   

  1. 1.西安工业大学 计算机科学与工程学院,西安 710021
    2.西安工业大学 兵器科学与技术学院,西安 710021
  • 出版日期:2025-10-01 发布日期:2025-09-30

Adaptive Asynchronous Aggregation Algorithm for Hierarchical Federated Learning Framework

XU Fei, SHEN Aoxiang, ZHAO Yiheng, DENG Yan, NING Xin, WANG Xing   

  1. 1.College of Computer Science and Engineering, Xi’an Technological University, Xi’an 710021, China
    2.College of Weapons Science and Technology, Xi’an Technological University, Xi’an 710021, China
  • Online:2025-10-01 Published:2025-09-30

摘要: 联邦学习作为一种分布式训练技术,在大规模神经网络模型训练得到广泛应用,但由于物联网设备之间的高通信成本、数据分布异质以及隐私安全等问题,对联邦学习训练带来巨大的挑战。针对上述问题,提出一种基于分层联邦学习的自适应异步聚合算法(HASFL)。客户端使用稀疏矩阵和本地差分隐私策略对本地模型进行处理并上传至边缘服务器,边缘服务器在进行边缘聚合时通过异常检测机制剔除恶意客户端设备。在边缘端通过动态分组和数据量加权的自适应异步聚合算法降低更新过程中的模型陈旧性差异对全局模型的影响。在服务端使用基于评分机制的自适应动态聚合算法对边缘服务器进行贡献评估动态调整其权重,以提高模型收敛速度和系统稳定性。实验结果表明,HASFL与FedAsync算法相比,达到目标精度的时间缩短约40%,并且在收敛速度和稳定性方面均优于其他对比算法。

关键词: 分层联邦学习, 差分隐私, 动态分组, 异步聚合, 异常检测, 自适应聚合

Abstract: Federated learning, as a distributed training technology, has been widely applied in the training of large-scale neural network models. However, due to issues such as high communication costs among Internet of things devices, heterogeneous data distribution, and privacy and security, it poses significant challenges to federated learning training. To address the above problems, an adaptive asynchronous aggregation algorithm based on hierarchical federated learning (HASFL) is proposed. Firstly, the client processes the local model using a sparse matrix and a local differential privacy policy and uploads it to the edge server. When the edge server performs edge aggregation, it eliminates malicious client devices through an anomaly detection mechanism. Secondly, at the edge end, the influence of model aging differences during the update process on the global model is reduced through an adaptive asynchronous aggregation algorithm based on dynamic grouping and data volume weighting. Finally, on the server side, an adaptive dynamic aggregation algorithm based on the scoring mechanism is used to evaluate the contributions of edge servers and dynamically adjust their weights to improve the convergence speed of the model and the stability of the system. The experimental results show that, compared with the FedAsync algorithm, HASFL shortens the time to achieve the target accuracy by approximately 40%, and is superior to other comparison algorithms in terms of convergence speed and stability.

Key words: hierarchical federated learning, differential privacy, dynamic grouping, asynchronous aggregation, anomaly detection, adaptive aggregation