
计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (17): 1-16.DOI: 10.3778/j.issn.1002-8331.2411-0122
李智慧,张毅,甄彤
出版日期:2025-09-01
发布日期:2025-09-01
LI Zhihui, ZHANG Yi, ZHEN Tong
Online:2025-09-01
Published:2025-09-01
摘要: 视频孪生技术的快速发展正在推动各行业的智能化进程。通过系统梳理该技术的发展现状,并总结其在医院、工厂、水库等领域的典型应用,展示出视频孪生在提升管理效率、保障公共安全、优化资源分配方面的显著潜力。当前,粮库管理存在实时监控、异常检测及数据集成方面的局限性,难以满足现代化粮食管理需求。基于此,进一步展望视频孪生技术在粮库信息化管理中的应用,重点分析其在粮情监测、设备智能管理、环境调控、异常检测等方面的创新性应用前景,为粮食安全管理提供高效、智能的解决方案,助力提升管理水平和粮食储备的安全保障。
李智慧, 张毅, 甄彤. 视频孪生技术研究及在粮食信息化中的应用展望[J]. 计算机工程与应用, 2025, 61(17): 1-16.
LI Zhihui, ZHANG Yi, ZHEN Tong. Research on Video Twin Technology and Prospect of Application in Food Informatization[J]. Computer Engineering and Applications, 2025, 61(17): 1-16.
| [1]李雯雯. 国家粮食和物资储备局: “十四五”统筹推进粮食安全治理体系和治理能力现代化[J]. 中国粮食经济, 2021(5): 30-33. LI W W. State grain and material reserve bureau: modernization of food security governance system and governance capability in the 14th five-year plan[J]. China Grain Economy, 2021(5): 30-33. [2] 彭嘉丽, 赵英亮, 王黎明. 基于深度学习的视频异常行为检测研究[J]. 激光与光电子学进展, 2021, 58(6): 51-61. PENG J L, ZHAO Y L, WANG L M. Research on video abnormal behavior detection based on deep learning[J]. Laser & Optoelectronics Progress, 2021, 58(6): 51-61. [3] GAIDHANE V H, HOTE Y V, SINGH V. A computationally efficient approach for template matching-based image registration[J]. Sadhana-Academy Proceedings in Engineering Sciences, 2014, 39(2): 317-331. [4] WANG Y, WANG D H. Foreground extraction based on anom-aly detection[J]. Electronics Letters, 2014, 50(8): 593-595. [5] 陈兆波, 张琳, 马晓轩. 改进注意力混合自动编码器视频异常检测研究[J]. 计算机工程与科学, 2025, 47(1): 130-139. CHEN Z B, ZHANG L, MA X X. Video anomaly detection with improved attention hybrid auto-encoder[J]. Computer Engineering & Science, 2025, 47(1): 130-139. [6] 程铭瑾. 基于人工智能的视频监控异常行为检测方法[J]. 信息记录材料, 2024, 25(3): 136-138. CHENG M J. An artificial intelligence-based method for detecting abnormal behavior in video surveillance[J]. Information Recording Material, 2024, 25(3): 136-138. [7] LI S F, LIU C X, YANG Y Q. Anomaly detection based on sparse coding with two kinds of dictionaries[J]. Signal, Image and Video Processing, 2018, 12(5): 983-989. [8] 李石峰, 罗晰, 刘晓茹, 等. 基于Transformer架构的端到端视频异常检测方法[J]. 计算机技术与发展, 2025, 35(6): 49-55. LI S F, LUO X, LIU X R,et al. An end-to-end video anomaly detection method based on transformer architecture[J]. Computer Technology and Development, 2025, 35(6): 49-55. [9] TAO F, XIAO B, QI Q L, et al. Digital twin modeling[J]. Journal of Manufacturing Systems, 2022, 64: 372-389. [10] THELEN A, ZHANG X G, FINK O, et al. A comprehensive review of digital twin: part 1: modeling and twinning enabling technologies[J]. Structural and Multidisciplinary Optimiz-ation, 2022, 65(12): 354. [11] DOOLEY A, PENICA M, MCGRATH S, et al. Digital twin bridging: enabling virtual worlds to manifest in the physical[C]//Proceedings of the 35th Irish Signals and Systems Conference. Piscataway: IEEE, 2024: 1-6. [12] ES-HAGHI M S, ANITESCU C, RABCZUK T. Methods for enabling real-time analysis in digital twins: a literature review[J]. Computers & Structures, 2024, 297: 107342. [13] ZHENG Q, DING G F, XIE J X, et al. Multi-stage cyber-physical fusion methods for supporting equipment’s digital twin applications[J]. The International Journal of Advanced Manufacturing Technology, 2024, 132(11): 5783-5802. [14] ILIU?? M E, MOISESCU M A, POP E, et al. Digital twin: a review of the evolution from concept to technology and its analytical perspectives on applications in various fields[J]. Applied Sciences, 2024, 14(13): 5454. [15] CHENG W, LIAN W, TIAN J. Building the hospital intelligent twins for all-scenario intelligence health care[J]. Digital Health, 2022, 8: 20552076221107894. [16] 胡慧娟, 王明帮, 雷崎方, 等. 数字孪生医院: 改变医疗的未来[J]. 生物医学工程学杂志, 2024, 41(2): 376-382. HU H J, WANG M B, LEI Q F, et al. Digital twin hospitals: transforming the future of healthcare[J]. Journal of Biomedical Engineering, 2024, 41(2): 376-382. [17] 朱玉兵. 一种数字孪生视频流的处理方法, 装置及设备: CN115484494A[P]. 2022-12-16. ZHU Y B. A method, device and apparatus for processing a digital twin video stream: CN115484494A[P]. 2022-12-16. [18] 彭永安, 季新华, 李梦祥, 等. 数字孪生和AI赋能下的医院智慧院区[J]. 中国医院院长, 2023, 19(11): 86-88. PENG Y A, JI X H, LI M X, et al. Digital twinning and intelligent hospital campus with AI empowerment[J]. China Hospital CEO, 2023, 19(11): 86-88. [19] 左雷. 一种基于数字孪生的AI视频融合智慧管控系统: CN202310711526.X[P]. 2023-09-22. ZUO L. An AI video fusion intelligent control system based on digital twin: CN202310711526.X[P]. 2023-09-22. [20] 刘洋, 林山驰, 李相国, 等. 面向数字孪生的远程视频监测方法: CN202310238623.1[P]. 2023-06-27. LIU Y, LIN S C, LI X G, et al. Digital twin-oriented remote video monitoring method: CN202310238623.1[P]. 2023-06-27. [21] XIA L Y, LU J F, ZHANG H, et al. Construction and application of smart factory digital twin system based on DTME[J]. The International Journal of Advanced Manufacturing Technology, 2022, 120(5): 4159-4178. [22] 卫鸿涛, 王旭, 洪磊. 智慧工厂数字孪生的仿真模型设计与连接实现[J]. 互联网周刊, 2024(20): 14-16. WEI H T, WANG X, HONG L. Simulation model design and connection realization of digital twin in smart factory[J]. China Internet Week, 2024(20): 14-16. [23] 张飞, 冯越宁, 李伟超, 等. 一种基于视频孪生的钢厂安全监测方法: CN202310846833.9[P]. 2023-11-03. ZHANG F, FENG Y N, LI, W C, et al. A safety monitoring method for steel mills based on video twinning: CN202310-846833.9[P]. 2023-11-03. [24] QIU F S, CHEN M, WANG L, et al. The architecture evol-ution of intelligent factory logistics digital twin from planning, implement to operation[J]. Advances in Mechanical Engineering, 2023, 15(9): 16878132231198339. [25] 雷志刚, 张新颖, 潘玲玲, 等. 一种实景视频与BIM的工地数字孪生方法、系统及存储介质: CN202311854141.5[P]. 2024-04-09. LEI Z G, ZHANG X Y, PAN L L, et al. A site digital twin method, system and storage medium for live video and BIM: CN202311854141.5[P]. 2024-04-09. [26] 齐夏钊, 潘强, 陈芝龙, 等. 基于AI视频识别和数字孪生的智能建筑动态展示系统: CN202410554207.7[P]. 2024-07-16. QI X Z, PAN Q, CHEN Z L et al. Dynamic display system for intelligent buildings based on AI video recognition and digital twin: CN202410554207.7[P]. 2024-07-16. [27] 廖霄, 王燕, 邓振华. 基于BIM和视频的数字孪生定位方法及系统: CN202410758846.5[P]. 2024-08-27. LIAO X, WANG Y, DENG Z H. Digital twin localization method and system based on BIM and video: CN20241075-8846.5[P]. 2024-08-27. [28] 席文智, 王彪, 宋子恺, 等. 基于孪生网络的火电厂监控视频遗留物检测[J]. 湖北电力, 2023, 47(5): 144-153. XI W Z, WANG B, SONG Z K, et al. Twin network-based video remnant detection for thermal power plant surveillance[J]. Hubei Electric Power, 2023, 47(5): 144-153. [29] 邓中翰, 周大良, 陶柯. 视频AR、AIoT、数字孪生协同技术在智慧水利中的应用[J]. 江苏水利, 2022(S2): 14-17. DENG Z H, ZHOU D L, TAO K. Application of video AR, AIoT and digital twin collaboration technology in smart water conservancy[J]. Jiangsu Water Resources, 2022(S2): 14-17. [30] KONG L W, WENG Y, GLAZ B, et al. Reservoir computing as digital twins for nonlinear dynamical systems[J]. Chaos, 2023, 33(3): 033111. [31] CHEN H, XIAO X, CHEN C, et al. Digital twin-based virtual modeling of the Poyang Lake wetland landscapes[J]. Environmental Modelling & Software, 2024, 181: 106168. [32] 杨光, 文文. 数字孪生技术在小型水库管理中的应用初探[C]//第十一届中国水利信息化技术论坛论文集, 2023: 718-724. YANG G, WEN W. Application of digital twin technology in small reservoir management[C]//Proceedings of the 11th China Water Resources Informatization Technology Forum, 2023: 718-724. [33] 范子武, 刘国庆, 乌景秀, 等. 推进数字孪生水网工程建设助力太湖流域水治理能力现代化[J]. 技术成果管理与研究, 2023(3): 64-66. FAN Z W, LIU G Q, WU J X, et al. Promoting the constru-ction of digital twin water network project to help modernize the water governance capacity of Taihu Lake basin[J]. Management and Research on Scientific & Technological Achievements, 2023(3): 64-66. [34] 张新航, 张雅茹, 麻振华, 等. 基于深度学习方法的YOLO目标检测综述[J]. 长江信息通信, 2024, 37(8): 52-56. ZHANG X H, ZHANG Y R,MA Z H, et al.Overview of YOLO object detection based on deep learning methods[J]. Changjiang Information & Communications, 2024, 37(8): 52-56. [35] 张瑞芳, 杜伊婷, 程小辉. 无人机视角下小目标检测算法[J]. 激光与光电子学进展, 2025, 62(4): 360-368. ZHANG R F, DU Y T, CHENG X H. Algorithm for small target detection from an unmanned aerial vehicle view[J]. Laser & Optoelectronics Progress2025,62(4): 360-368. [36] MURUGESAN M, THILAGAMANI S. RETRACTED: efficient anomaly detection in surveillance videos based on multi layer perception recurrent neural network[J]. Microprocessors and Microsystems, 2020, 79: 103303. [37] ROSSI L, BERNUZZI V, FONTANINI T, et al. Memory-augmented online video anomaly detection[C]//Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2024: 6590-6594. [38] LUO W, LIU W, LIAN D, et al. Video anomaly detection with sparse coding inspired deep neural networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2021, 43(3): 1070-1084. [39] KHAIRE P, KUMAR P. A semi-supervised deep learning based video anomaly detection framework using RGB-D for surveillance of real-world critical environments[J]. Forensic Science International: Digital Investigation, 2022, 40: 301346. [40] LIU T S, ZHANG C, LAM K M, et al. Decouple and resolve: transformer-based models for online anomaly detection from weakly labeled videos[J]. IEEE Transactions on Information Forensics and Security, 2023, 18: 15-28. [41] MOZAFFARI M, DOSHI K, YILMAZ Y. Online multivariate anomaly detection and localization for high-dimensional settings[J]. Sensors (Basel), 2022, 22(21): 8264. [42] MAJHI S, DAS S, BREMOND F. DAM: dissimilarity attention module for weakly-supervised video anomaly detection[C]//Proceedings of the 17th IEEE International Conference on Advanced Video and Signal Based Surveillance. Piscataway: IEEE, 2021: 1-8. [43] HUANG C, LIU C, WEN J, et al. Weakly supervised video anomaly detection via self-guided temporal discriminative transformer[J]. IEEE Transactions on Cybernetics, 2024, 54(5): 3197-3210. [44] 刘成明, 薛然, 石磊, 等. 融合门控自注意力机制的生成对抗网络视频异常检测[J]. 中国图象图形学报, 2022, 27(11): 3210-3221. LIU C M, XUE R, SHI L, et al. The gating self-attention mechanism and GAN integrated video anomaly detection[J]. Journal of Image and Graphics, 2022, 27(11): 3210-3221. [45] SINGH R, SETHI A, SAINI K, et al. Attention-guided generator with dual discriminator GAN for real-time video anomaly detection[J]. Engineering Applications of Artificial Inte-lligence, 2024, 131: 107830. [46] ASLAM N, KOLEKAR M H. TransGANomaly: transformer based generative adversarial network for video anomaly dete-ction[J]. Journal of Visual Communication and Image Representation, 2024, 100: 104108. [47] LI G, HE P, LI H B, et al. Adversarial composite prediction of normal video dynamics for anomaly detection[J]. Computer Vision and Image Understanding, 2023, 232: 103686. [48] BOZCAN I, LE FEVRE J, PHAM H X, et al. GridNet: image-agnostic conditional anomaly detection for indoor surveillance[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 1638-1645. [49] XIAO W, HUANG X L, HE F, et al. Online robust principal component analysis with change point detection[J]. IEEE Transactions on Multimedia, 2020, 22(1): 59-68. [50] YAO Y, WANG X Z, XU M Z, et al. DoTA: unsupervised detection of traffic anomaly in driving videos[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(1): 444-459. [51] YANG Z W, LIU J, WU P. Bidirectional retrospective generation adversarial network for anomaly detection in videos[J]. IEEE Access, 2021, 9: 107842-107857. [52] WANG Y, ZHOU J G, GUAN J H. A lightweight video anomaly detection model with weak supervision and adaptive instance selection[J]. Neurocomputing, 2025, 613: 128698. [53] WU P H, WANG W Q, CHANG F L, et al. DSS-Net: dynamic self-supervised network for video anomaly detection[J]. IEEE Transactions on Multimedia, 2024, 26: 2124-2136. [54] CAMPOS C, ELVIRA R, RODRIGUEZ J J G, et al. ORB-SLAM3: an accurate open-source library for visual, visual-inertial, and multimap SLAM[J]. IEEE Transactions on Robo-tics, 2021, 37(6): 1874-1890. [55] FERRERA M, EUDES A, MORAS J, et al. OV-SLAM: a fully online and versatile visual SLAM for real-time applications[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 1399-1406. [56] CUJó BLASCO J, BEMPOSTA ROSENDE S, SáNCHEZ-SORIANO J. Automatic real-time creation of three-dimensional (3D) representations of objects, buildings, or scenarios using drones and artificial intelligence techniques[J]. Drones, 2023, 7(8): 516. [57] LI R H, WANG S, GU D B. DeepSLAM: a robust monocular SLAM system with unsupervised deep learning[J]. IEEE Transactions on Industrial Electronics, 2021, 68(4): 3577-3587. [58] LI X G, JI W T, HUANG J D. Local instance-based transfer learning for reinforcement learning[J]. Engineering Applications of Artificial Intelligence, 2024, 133: 108488. [59] SONG J G, LEE J W. A CNN-based online self-calibration of binocular stereo cameras for pose change[J]. IEEE Transactions on Intelligent Vehicles, 2024, 9(1): 2542-2552. [60] MERAT R, CIOFFI G, BAUERSFELD L, et al. Drift-free visual SLAM using digital twins[J]. IEEE Robotics and Automation Letters, 2025, 10(2): 1633-1640. [61] 彭大鑫, 甄彤, 李智慧. 低光照图像增强研究方法综述[J]. 计算机工程与应用, 2023, 59(18): 14-27. PENG D X, ZHEN T, LI Z H. Survey of research methods for low light image enhancement[J]. Computer Engineering and Applications, 2023, 59(18): 14-27. [62] 孙福艳, 吕准, 吕宗旺. 基于深度学习的低光照图像增强研究综述[J]. 计算机应用研究, 2025, 42(1): 19-27. SUN F Y, LYU Z, LYU Z W. Review of low light image enhancement based on deep learning[J]. Application Research of Computers, 2025, 42(1): 19-27. [63] 巨志勇, 易成, 周重臣, 等. YOLO-Rice: 一种基于YOLO-v5的水稻虫害检测[J]. 控制工程, 2024, 31(12): 2196-2205. JU Z Y, YI C, ZHOU C C, et al. YOLO-Rice: a rice pest detection based on YOLOv5[J]. Control Engineering, 2024, 31(12): 2196-2205. [64] SUN K, TANG M D, LI S, et al. Mildew detection in rice grains based on computer vision and the YOLO convolutional neural network[J]. Food Science & Nutrition, 2024, 12(2): 860-868. [65] 贺纪桦, 张月峰, 刘悦云. 基于改进YOLOv8的智慧工厂工人不规范行为检测[J]. 制造技术与机床, 2025(2): 185-193. HE J H, ZHANG Y F, LIU Y Y. Worker irregular behavior detection in smart factory based on improved YOLOv8[J]. Manufacturing Technology and Machine Tools, 2025(2): 185-193. [66] ZHAO D A, SONG T, GAO J, et al. YOLO-fall: a novel convolutional neural network model for fall detection in open spaces[J]. IEEE Access, 2024, 12: 26137-26149. [67] ALGHAMDI W. Synchronization patterns for digital twin systems[J]. Journal of Applied Data Sciences, 2024, 5(3): 1026-1037. [68] CASTELLANI A, SCHMITT S, SQUARTINI S. Real-world anomaly detection by using digital twin systems and weakly supervised learning[J]. IEEE Transactions on Industrial Informatics, 2021, 17(7): 4733-4742. [69] HUANG X Y, YANG H J, HU S S, et al. Digital twin-driven network architecture for video streaming[J]. IEEE Network, 2024, 38(6): 334-341. [70] ZHANG L M, GUO J, FU X L, et al. Digital twin enabled real-time advanced control of TBM operation using deep lear-ning methods[J]. Automation in Construction, 2024, 158: 105240. [71] WU G, CHEN Z Q, DANG J. Data fusion and digital modeling[M]//Intelligent bridge maintenance and management: emerging digital technologies. Cham: Springer, 2024. [72] ZHANG K S, XU Q, LIU C X, et al. Intelligent decision-making system for mineral processing production indices based on digital twin interactive visualization[J]. Journal of Visualization, 2024, 27(3): 421-436. [73] WU Z P, CHEN J M, AL-SABRI R, et al. Depth-adaptive graph neural architecture search for graph classification[J]. Knowledge-Based Systems, 2024, 301: 112321. [74] ZHANG W S, ZHANG X L, XU X W, et al. GNN-JFL: graph neural network for video SAR shadow tracking with joint motion-appearance feature learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 1-17. [75] VETTORUZZO A, BOUGUELIA M R, R?GNVALDSSON T. Multimodal meta-learning through meta-learned task representations[J]. Neural Computing and Applications, 2024, 36(15): 8519-8529. [76] VETTORUZZO A, BOUGUELIA M R, VANSCHOREN J, et al. Advances and challenges in meta-learning: a technical review[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2024, 46(7): 4763-4779. [77] REN L, MO T Y, CHENG X J. Meta-learning based domain generalization framework for fault diagnosis with gradient aligning and semantic matching[J]. IEEE Transactions on Industrial Informatics, 2024, 20(1): 754-764. [78] GAO C, ZHENG Y, WANG W J, et al. Causal inference in recommender systems: a survey and future directions[J]. ACM Transactions on Information Systems, 2024, 42(4): 1-32. [79] 张立国, 季鑫烨, 章玉鹏, 等. 基于优化RetinaNet的自适应特征融合的轻量化目标检测方法[J]. 计量学报, 2024, 45(11): 1665-1670. ZHANG L G, JI X Y, ZHANG Y P, et al. Lightweight target detection method based on adaptive feature fusion of optimized RetinaNet[J]. Acta Metrologica Sinica, 2024, 45(11): 1665-1670. [80] HE Y, XIAO L. Structured pruning for deep convolutional neural networks: a survey[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2024, 46(5): 2900-2919. [81] LI J, GUO S, LIANG W F, et al. Mobility-aware utility maximization in digital twin-enabled serverless edge computing[J]. IEEE Transactions on Computers, 2024, 73(7): 1837-1851. [82] XU Z F, WANG Z, GAO C J, et al. A digital twin system for centrifugal pump fault diagnosis driven by transfer learning based on graph convolutional neural networks[J]. Computers in Industry, 2024, 163: 104155. [83] RAHIMPOUR S M, KAZEMI M, MOALLEM P, et al. Video anomaly detection based on attention and efficient spatio-temporal feature extraction[J]. The Visual Computer, 2024, 40(10): 6825-6841. [84] YANG H Y, LIU S N, WU M X, et al. Attention-based misaligned spatiotemporal auto-encoder for video anomaly dete-ction[J]. Signal, Image and Video Processing, 2024, 18(1): 285-297. [85] 李文生, 张菁, 卓力, 等. 基于Transformer的视觉分割技术进展[J]. 计算机学报, 2024,47(12): 2760-2782. LI W S, ZHANG J, ZHUO L, et al. Overview of Transformer-based visual segmentation techniques[J]. Chinese Journal of Computers, 2024, 47(12): 2760-2782. [86] LIU T, LAM K M, BAO B K. Injecting text clues for impro-ving anomalous event detection from weakly labeled videos[J]. IEEE Transactions on Image Process, 2024, 33: 5907-5920. [87] HUSSAIN A, ULLAH W, KHAN N, et al. TDS-Net: transformer enhanced dual-stream network for video anomaly detection[J]. Expert Systems with Applications, 2024, 256: 124846. [88] WASTUPRANATA L M, KONG S G, WANG L P. Deep learning for abnormal human behavior detection in surveillance videos: a survey[J]. Electronics, 2024, 13(13): 2579. |
| [1] | 彭海龙, 祝玉华, 甄彤, 李智慧, 张庆辉, 潘泉. 数字孪生技术及其在粮库中的应用综述[J]. 计算机工程与应用, 2025, 61(15): 54-71. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||