[1] ZHANG Y X, CHEN Y Q, PAN Z W. A deep temporal model for mental fatigue detection[C]//Proceedings of the 2018 IEEE International Conference on Systems, Man, and Cybernetics , 2018: 1879-1884.
[2] LI D, CHEN D C, JIN B H, et al. MAD-GAN: multivariate anomaly detection for time series data with generative adversarial networks[C]//Proceedings of the International Conference on Artificial Neural Networks, 2019: 703-716.
[3] SARDA K, ACERNESE A, NOLE V, et al. A multi-step anomaly detection strategy based on robust distances for the steel industry[J]. IEEE Access, 2021, 9: 53827-53837.
[4] 宋春雷, 赵旭俊, 高亚星, 等. 采用分段特征表示的异常序列检测算法[J]. 计算机工程与应用, 2023, 59(9): 262-271.
SONG C L, ZHAO X J, GAO Y X, et al. Anomaly series detection algorithm based on segmentation feature representation[J]. Journal of Computer Engineering and Applications, 2023, 59(9): 262-271.
[5] 王昊天, 郑栋毅, 刘芳, 等. 面向多元时序数据的个性化联邦异常检测方法[J]. 计算机工程与应用, 2022, 58(11): 60-65.
WANG H T, ZHENG D Y, LIU F, et al. Personalized federated anomaly detection method for multivariate time series data[J]. Journal of Computer Engineering and Applications, 2022, 58(11): 60-65.
[6] 展鹏, 陈琳, 曹鲁慧, 等. 核转折点裁剪表示的时间序列异常检测算法[J]. 计算机工程与应用, 2020, 56(23): 130-138.
ZHAN P, CHEN L, CAO L H, et al. Time series anomaly detection based on kernel turning points clipped representation[J]. Journal of Computer Engineering and Applications, 2020, 56(23): 130-138.
[7] 席亮, 王瑞东, 樊好义, 等. 基于样本关联感知的无监督深度异常检测模型[J]. 计算机学报, 2021, 44(11): 2317-2331.
XI L, WANG R D, FAN H Y, et al. Sample-correlation-aware unsupervised deep anomaly detection model[J]. Chinese Journal of Computers, 2021, 44(11): 2317-2331.
[8] 黄训华, 张凤斌, 樊好义, 等. 基于多模态对抗学习的无监督时间序列异常检测[J]. 计算机研究与发展, 2021, 58(8): 1655-1667.
HUANG X H, ZHANG F B, FAN H Y, et al. Multimodal adversarial learning based unsupervised time series anomaly detection[J]. Journal of Computer Research and Development, 2021, 58(8): 1655-1667.
[9] 席亮, 刘涵, 樊好义, 等. 基于深度对抗学习潜在表示分布的异常检测模型[J]. 电子学报, 2021, 49(7): 1257-1265.
XI L, LIU H, FAN H Y, et al. Deep adversarial learning latent representation distribution model for anomaly detection[J]. Acta Electronica Sinica, 2021, 49(7): 1257-1265.
[10] BREUNIG M M, KRIEGEL H P, NG R T, et al. LOF: identifying density-based local outliers[C]//Proceedings of the International Conference on Management of Data, 2000: 93-104.
[11] SCHOLKOPF B, PLATT J C, SHAWE-TAYLOR J, et al. Estimating the support of a high-dimensional distribution[J]. Neural Computation, 2001, 13(7): 1443-1471.
[12] SAKURADA M, YAIRI T. Anomaly detection using autoencoders with nonlinear dimensionality reduction[C]//Proceedings of the 2nd Workshop on Machine Learning for Sensory Data Analysis, 2014: 4-11.
[13] ZHANG Y X, WANG J D, CHEN Y Q, et al. Adaptive memory networks with self-supervised learning for unsupervised anomaly detection[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 35(12): 12068-12080.
[14] ERGEN T, KOZAT S S. Unsupervised anomaly detection with LSTM neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 31(8): 3127-3141.
[15] LU W N, CHENG Y, XIAO C, et al. Unsupervised sequential outlier detection with deep architectures[J]. IEEE Transactions on Image Processing, 2017, 26(9): 4321-4330.
[16] ZHENG Y, KOH H Y, JIN M, et al. Correlation-aware spatial-temporal graph learning for multivariate time-series anomaly detection[J]. arXiv:2307.08390, 2023.
[17] XU J H, WU H X, WANG J M, et al. Anomaly transformer: time series anomaly detection with association discrepancy[C]//Proceedings of the International Conference on Learning Representations, 2021.
[18] TAX D M, DUIN R P. Support vector data description[J]. Machine Learning, 2004, 54: 45-66.
[19] PAFFENROTH R, DU T P, NONG R, et al. Space-time signal processing for distributed pattern detection in sensor networks[J]. IEEE Journal of Selected Topics in Signal Processing, 2013, 7(1): 38-49.
[20] SCHOLKOPF B, SMOLA A, MULLER K R. Nonlinear component analysis as a kernel eigenvalue problem[J]. Neural Computation, 1998, 10(5): 1299-1319.
[21] HOFFMANN H. Kernel PCA for novelty detection[J]. Pattern Recognition, 2007, 40(3): 863-874.
[22] PAFFENROTH R, KAY K, SERVI L. Robust PCA for anomaly detection in cyber networks[J]. arXiv:1801.01571,2018.
[23] GüNNEMANN N, GUNNEMANN S, FALOUTSOS C. Robust multivariate autoregression for anomaly detection in dynamic product ratings[C]//Proceedings of the 23rd International Conference on World Wide Web, 2014: 361-372.
[24] MOAYEDI H Z, MASNADI-SHIRAZI M A. Arima model for network traffic prediction and anomaly detection[C]//Proceedings of the 2008 International Symposium on Information Technology, 2008, 4: 1-6.
[25] ZHANG C K, LI S C, ZHANG H Y, et al. VELC: a new variational autoencoder based model for time series anomaly detection[J]. arXiv:1907.01702,2019.
[26] LAI G K, CHANG W C, YANG Y M, et al. Modeling long-and short-term temporal patterns with deep neural networks[C]//Proceedings of the 41st International Conference on Research & Development in Information Retrieval, 2018: 95-104.
[27] WONG L, LIU D, BERTI-EQUILLE L, et al. AER: auto-encoder with regression for time series anomaly detection[C]//Proceedings of the 2022 IEEE International Conference on Big Data, 2022: 1152-1161.
[28] XIAO Q F, SHAO S K, WANG J. Memory-augmented adversarial autoencoders for multivariate time-series anomaly detection with deep reconstruction and prediction[J]. arXiv:2110.08306, 2021.
[29] DARBAN Z Z, WEBB G I, PAN S, et al. CARLA: a self-supervised contrastive representation learning approach for time series anomaly detection[J]. arXiv:2308.09296,2023.
[30] CHEN K, FENG M, WIRJANTO T S. Time-series anomaly detection via contextual discriminative contrastive learning[J]. arXiv:2304.07898, 2023
[31] XU H Z, WANG Y J, JIAN S L, et al. Calibrated one-class classification for unsupervised time series anomaly detection[J]. arXiv:2207.12201, 2022.
[32] XIAO F, SUN R, FAN J. Restricted generative projection for one-class classification and anomaly detection[J]. arXiv:2307.04097,2023.
[33] ABDULAAL A, LIU Z, LANCEWICKI T. Practical approach to asynchronous multivariate time series anomaly detection and localization[C]//Proceedings of the 27th Conference on Knowledge Discovery & Data Mining, 2021: 2485-2494.
[34] MATHUR A P, TIPPENHAUER N O. SWaT: a water treatment testbed for research and training on ICS security[C]//Proceedings of the 2016 International Workshop on Cyber-Physical Systems for Smart Water Networks, 2016: 31-36.
[35] ALTUN K, BARSHAN B, TUNCEL O. Comparative study on classifying human activities with miniature inertial and magnetic sensors[J]. Pattern Recognition, 2010, 43(10): 3605-3620.
[36] ANGRYK R, MARTENS P, AYDIN B, et al. SWAN-SF[EB/OL]. (2019-01-31)[2023-08-01]. https://doi.org/10.7910/DVN/EBCFKM.
[37] LAI K H, ZHA D C, XU J J, et al. Revisiting time series outlier detection: definitions and benchmarks[C]//Proceedings of the 35th Conference on Neural Information Processing Systems Datasets and Benchmarks Track, 2021.
[38] MORITZ S, REHBACH F, CHANDRASEKARAN S, et al. GECCO industrial challenge 2018 dataset: a water quality dataset for the “Internet of Things: online anomaly detection for drinking water quality”[C]//Proceedings of the Genetic and Evolutionary Computation Conference, 2018.
[39] ZHAO Y, NASRULLAH Z, LI Z. Pyod: a python toolbox for scalable outlier detection[J]. arXiv:1901.01588, 2019.
[40] BHATNAGAR A, KASSIANIK P, LIU C H, et al. Merlion: a machine learning library for time series[J]. arXiv:2109. 09265, 2021.
[41] BALDI P. Autoencoders, unsupervised learning, and deep architectures[C]//Proceedings of the Workshop on Unsupervised and Transfer Learning, 2012: 37-49.
[42] SUTSKEVER I, VINYALS O, LE Q V. Sequence to sequence learning with neural networks[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems, 2014: 3104-3112.
[43] RUFF L, VANDERMEULEN R, GOERNITZ N, et al. Deep one-class classification[C]//Proceedings of the International Conference on Machine Learning, 2018: 4393-4402.
[44] ZONG B, SONG Q, MIN M R, et al. Deep autoencoding Gaussian mixture model for unsupervised anomaly detection[C]//Proceedings of the International Conference on Learning Representations, 2018.
[45] SU Y, ZHAO Y J, NIU C H, et al. Robust anomaly detection for multivariate time series through stochastic recurrent neural network[C]//Proceedings of the 25th International Conference on Knowledge Discovery & Data Mining, 2019: 2828-2837.
[46] ZHAO H, WANG Y J, DUAN J Y, et al. Multivariate time-series anomaly detection via graph attention network[C]//Proceedings of the 2020 IEEE International Conference on Data Mining, 2020: 841-850.
[47] QIU C, PFROMMER T, KLOFT M, et al. Neural transformation learning for deep anomaly detection beyond images[C]//Proceedings of the International Conference on Machine Learning, 2021: 8703-8714.
[48] MIAO Q C, XU C F, ZHAN J, et al. An unsupervised short-and long-term mask representation for multi-variate time series anomaly detection[C]//Proceedings of the International Conference on Neural Information Processing, 2022: 504-516.
[49] TULI S, CASALE G, JENNINGS N R. TranAD: deep transformer networks for anomaly detection in multivariate time series data[J]. Proceedings of the VLDB Endowment, 2022, 15(6): 1201-1214.
[50] LI Z, ZHAO Y, HU X Y. ECOD: unsupervised outlier detection using empirical cumulative distribution functions[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 35(12): 12181-12193. |