[1] DEWI W N, SAFRI S, ROSMA I H. Modified precordial lead ECG SafOne on electrocardiography recordings[J]. Scientific Reports, 2022, 12(1): 7934.
[2] ZONI-BERISSO M, LERCARI F, CARAZZA T, et al. Epidemiology of atrial fibrillation: European perspective[J]. Clinical Epidemiology, 2014(6): 213-220.
[3] KORNEJ J, BORSCHEL C S, BENJAMIN E J, et al. Epidemiology of atrial fibrillation in the 21st century: novel methods and new insights[J]. Circulation Research, 2020, 127(1): 4-20.
[4] ZHANG R, ISOLA P, EFROS A A. Split-brain autoencoders: unsupervised learning by cross-channel prediction[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 1058-1067.
[5] KIYASSEH D, ZHU T, CLIFTON D A. Clocs: contrastive learning of cardiac signals across space, time, and patients[C]//Proceedings of the International Conference on Machine Learning, 2021: 5606-5615.
[6] OH J, CHUNG H, KWON J, et al. Lead-agnostic self-supervised learning for local and global representations of electrocardiogram[C]//Proceedings of the Conference on Health, Inference, and Learning, 2022: 338-353.
[7] MEHARI T, STRODTHOFF N. Self-supervised representation learning from 12-lead ECG data[J]. Computers in Biology and Medicine, 2022, 141: 105114.
[8] 陈健, 刘明, 熊鹏, 等. 基于卷积自编码神经网络的心电信号降噪[J]. 计算机工程与应用, 2020, 56(16): 148-155.
CHEN J, LIU M, XIONG P, et al. ECG signal denoising based on convolutional auto-encoder neural network[J]. Computer Engineering and Applications, 2020, 56(16): 148-155.
[9] ZHOU C, PAFFENROTH R C. Anomaly detection with robust deep autoencoders[C]//Proceedings of the 23rd International Conference on Knowledge Discovery and Data Mining, 2017: 665-674.
[10] RUFF L, VANDERMEULEN R, GOERNITZ N, et al. Deep one-class classification[C]//Proceedings of the International Conference on Machine Learning, 2018: 4393-4402.
[11] LI Z, ZHAO Y, HU X, et al. ECOD: unsupervised outlier detection using empirical cumulative distribution functions[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(12): 12181-12193.
[12] YUE H G, JUN H, XU L, et al. Effectiveness of single-lead ECG devices for detecting atrial fibrillation: an overview of systematic reviews[J]. Worldviews on Evidence-Based Nursing, 2024, 21(1): 79-86.
[13] SERMANET P, LYNCH C, HSU J, et al. Time-contrastive networks: self-supervised learning from multi-view observation[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2017: 486-487.
[14] FRANCESCHI J Y, DIEULEVEUT A, JAGGI M. Unsupervised scalable representation learning for multivariate time series[C]//Proceedings of the 33rd International Conference on Neural Information Processing Systems, 2019: 4650-4661.
[15] SCHNEIDER S, BAEVSKI A, COLLOBERT R, et al. wav2vec: unsupervised pre-training for speech recognition[J]. arXiv:1904.05862, 2019.
[16] YèCHE H, DRESDNER G, LOCATELLO F, et al. Neighborhood contrastive learning applied to online patient monitoring[C]//Proceedings of the International Conference on Machine Learning, 2021: 11964-11974.
[17] PASCUAL S, RAVANELLI M, SERRA J, et al. Learning problem-agnostic speech representations from multiple self-supervised tasks[J]. arXiv:1904.03416, 2019.
[18] RAVANELLI M, ZHONG J, PASCUAL S, et al. Multi-task self-supervised learning for robust speech recognition[C]//Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2020: 6989-6993.
[19] SAEED A, OZCELEBI T, LUKKIEN J. Multi-task self-supervised learning for human activity detection[J]. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2019, 3(2): 1-30.
[20] SARKAR P, ETEMAD A. Self-supervised learning for ECG-based emotion recognition[C]//Proceedings of the 2020 IEEE International Conference on Acoustics, Speech and Signal Processing, 2020: 3217-3221.
[21] MIAO Q, XU C, ZHAN J, et al. An unsupervised short-and long-term mask representation for multivariate time series anomaly detection[C]//Proceedings of the International Conference on Neural Information Processing, 2022: 504-516.
[22] ZONG B, SONG Q, MIN M R, et al. Deep autoencoding Gaussian mixture model for unsupervised anomaly detection[C]//Proceedings of the International Conference on Learning Representations, 2018.
[23] ZHANG C, SONG D, CHEN Y, et al. A deep neural network for unsupervised anomaly detection and diagnosis in multivariate time series data[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2019: 1409-1416.
[24] PARK D, HOSHI Y, KEMP C C. A multimodal anomaly detector for robot-assisted feeding using an LSTM-based variational autoencoder[J]. IEEE Robotics and Automation Letters, 2018, 3(3): 1544-1551.
[25] AUDIBERT J, MICHIARDI P, GUYARD F, et al. USAD: unsupervised anomaly detection on multivariate time series[C]//Proceedings of the 26th International Conference on Knowledge Discovery & Data Mining, 2020: 3395-3404.
[26] 王昊天, 郑栋毅, 刘芳, 等. 面向多元时序数据的个性化联邦异常检测方法[J]. 计算机工程与应用, 2022, 58(11): 60-65.
WANG H T, ZHENG D Y, LIU F, et al. Personalized federated anomaly detection method for multivariate time series data[J]. Computer Engineering and Applications, 2022, 58(11): 60-65.
[27] 席亮, 刘涵, 樊好义, 等. 基于深度对抗学习潜在表示分布的异常检测模型[J]. 电子学报, 2021, 49(7): 1257-1265.
Ⅺ L, LIU H, FAN H Y, et al. Deep adversarial learning latent representation distribution model for anomaly detection[J]. Acta Electronica Sinica, 2021, 49(7): 1257-1265.
[28] 席亮, 王瑞东, 樊好义, 等. 基于样本关联感知的无监督深度异常检测模型[J]. 计算机学报, 2021, 44(11): 2317-2331.
Ⅺ L, WANG R D, FAN H Y. Sample-correlation-aware unsupervised deep anomaly detection model[J]. Chinese Journal of Computers, 2021, 44(11): 2317-2331.
[29] 黄训华, 张凤斌, 樊好义, 等. 基于多模态对抗学习的无监督时间序列异常检测[J]. 计算机研究与发展, 2021, 58(8): 1655-1667.
HUANG X H, ZHANG F B, FAN H Y, et al. Multimodal adversarial learning based unsupervised time series anomaly detection[J]. Journal of Computer Research and Development, 2021, 58(8): 1655-1667.
[30] SU Y, ZHAO Y, NIU C, et al. Robust anomaly detection for multivariate time series through stochastic recurrent neural network[C]//Proceedings of the 25th International Conference on Knowledge Discovery & Data Mining, 2019: 2828-2837.
[31] LI Z, ZHAO Y, HAN J, et al. Multivariate time series anomaly detection and interpretation using hierarchical inter-metric and temporal embedding[C]//Proceedings of the 27th Conference on Knowledge Discovery & Data Mining, 2021: 3220-3230.
[32] SILIPO R, MARCHESI C. Artificial neural networks for automatic ECG analysis[J]. IEEE Transactions on Signal Processing, 1998, 46(5): 1417-1425.
[33] LAGERHOLM M, PETERSON C, BRACCINI G, et al. Clustering ECG complexes using Hermite functions and self-organizing maps[J]. IEEE Transactions on Biomedical Engineering, 2000, 47(7): 838-848.
[34] BENALI R, REGUIG B F, SLIMANEHZ. Automatic classification of heartbeats using wavelet neural network[J]. Journal of Medical Systems, 2012, 36: 883-892.
[35] ACIR N. Classification of ECG beats by using a fast least square support vector machines with a dynamic programming feature selection algorithm[J]. Neural Computing & Applications, 2005, 14: 299-309.
[36] KAO W C, YU C K, SHEN C P, et al. Electrocardiogram analysis with adaptive feature selection and support vector machines[C]//Proceedings of the 2006 IEEE Asia Pacific Conference on Circuits and Systems, 2006: 1783-1786.
[37] SCHLEGL T, SEEB?CK P, WALDSTEIN S M, et al. Unsupervised anomaly detection with generative adversarial networks to guide marker discovery[C]//Proceedings of the International Conference on Information Processing in Medical Imaging, 2017: 146-157.
[38] AKCAY S, ATAPOUR-ABARGHOUEI A, BRECKON T P. GANomaly: semi-supervised anomaly detection via adversarial training[C]//Proceedings of the 14th Asian Conference on Computer Vision, 2019: 622-637.
[39] 庄跃生, 林珊玲, 林志贤, 等 . 生成对抗网络在数据异常检测中的研究[J]. 计算机工程与应用, 2022, 58(4): 143-149.
ZHUANG Y S, LIN S L, LIN Z X, et al. Study on generative adversarial network for data anomaly detection[J]. Computer Engineering and Applications, 2022, 58(4): 143-149.
[40] ZHOU B, LIU S, HOOI B, et al. BeatGAN: anomalous rhythm detection using adversarially generated time series[C]//Proceedings of the International Joint Conference on Artificial Intelligence, 2019: 4433-4439.
[41] 王润极. 应用心率变异性指标监控运动训练的研究进展[J]. 福建体育科技, 2023, 42(4): 94-98.
WANG R J. Advances in the application of heart rate variability indices to monitor exercise training[J]. Fujian Sports Science and Technology, 2023, 42(4): 94-98.
[42] XU H, WANG Y, JIAN S, et al. Calibrated one-class classification for unsupervised time series anomaly detection[J]. arXiv:2207.12201, 2022.
[43] WANG R, LIU C, MOU X, et al. Deep contrastive one-class time series anomaly detection[C]//Proceedings of the International Conference on Data Mining, 2023: 694-702. |