[1] ZHU C J, LIU Q Q, BI J B. Communication efficient distributed hypergraph clustering[C]//Proceedings of the 44th International Conference on Research and Development in Information Retrieval, Virtual Event, 2021: 2131-2135.
[2] YANG T C, ZHANG L H, YANG C, et al. Hypergraph clustering network for interaction data[J]. IEEE Data Engineering Bulletin, 2022, 45(4): 88-101.
[3] 喻莉敏. 基于超图聚类挖掘微生物高阶模块的研究[D]. 武汉: 华中师范大学, 2020.
YU L M. Mining microbial high-order modules based on hypergraph clustering[D]. Wuhan: Central China Normal University, 2020.
[4] 胡秉德, 王新根, 王新宇, 等. 超图学习综述: 算法分类与应用分析[J]. 软件学报, 2022, 33(2): 498-523.
HU B D, WANG X G, WANG X Y, et al. Survey of hypergraph learning: method and application analysis[J]. Journal of Software, 2022, 33(2): 498-523.
[5] ZHOU D Y, HUANG J Y, BERNHARD S. Learning with hypergraphs: clustering, classification, and embedding[C]//Proceedings of the 20th Annual Conference on Neural Information Processing Systems, 2006: 1601-1608.
[6] YANG T C, YANG C, ZHANG L H, et al. Co-clustering interactions via attentive hypergraph neural network[C]//Proceedings of the 45th International Conference on Research and Development in Information Retrieval, 2022: 859-869.
[7] JIANG J, WEI Y, FENG Y, et al. Dynamic hypergraph neural networks[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence, 2019: 2635-2641.
[8] YANG H Z, GAO Q X, XIA W, et al. Multiview spectral clustering with bipartite graph[J]. IEEE Transactions on Image Processing, 2022, 31: 3591-3605.
[9] DALL’AMICO L, COUILLET R, TREMBLAY N. A unified framework for spectral clustering in sparse graphs[J]. Journal of Machine Learning Research, 2021, 22(1): 9859-9914.
[10] 黄展鹏, 吴杰康, 易法令. 自适应图融合的缺失多视图聚类算法[J]. 计算机工程与应用, 2023, 59(9): 176-181.
HUANG Z P, WU J K, YI F L. Incomplete multi-view clustering algorithm with adaptive graph fusion[J]. Computer Engineering and Applications, 2023, 59(9): 176-181.
[11] 龚卫华, 沈松, 裴小兵, 等. 基于位置的社交网络中双重异质社区的聚类与关联方法[J]. 计算机学报, 2020, 43(10): 1909-1923.
GONG W H, SHEN S, PEI X B, et al. Clustering and associating method of dual heterogeneous communities in location based social networks[J]. Chinese Journal of Computers, 2020, 43(10): 1909-1923.
[12] 张天成, 田雪, 孙相会, 等. 知识图谱嵌入技术研究综述[J]. 软件学报, 2023, 34(1): 277-311.
ZHANG T C, TIAN X, SUN X H, et al. Overview on knowledge graph embedding technology research[J]. Journal of Software, 2023, 34(1): 277-311.
[13] 陈子睿, 王鑫, 王晨旭, 等. 面向时间感知的知识超图链接预测[J]. 软件学报, 2023, 34(10): 4533-4547.
CHEN Z R, WANG X, WANG C X, et al. Towards time-aware knowledge hypergraph link prediction[J]. Journal of Software, 2023, 34(10): 4533-4547.
[14] WANG C, PAN S R, HU R Q, et al. Attributed graph clustering: a deep attentional embedding approach[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence, 2019: 3670-3676.
[15] HU Z N, DONG Y X, WANG K S, et al. Heterogeneous graph transformer[C]//Proceedings of The Web Conference 2020, 2020: 2704-2710.
[16] 腊志垚, 钱育蓉, 冷洪勇, 等. 基于随机游走的图嵌入研究综述[J]. 计算机工程与应用, 2022, 58(13): 1-13.
LA Z Y, QIAN Y R, LENG H Y, et al. Overview of research on graph embedding based on random walk[J]. Computer Engineering and Applications, 2022, 58(13): 1-13.
[17] FENG Y F, YOU H X, ZHANG Z Z, et al. Hypergraph neural networks[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence, 2019: 3558-3565.
[18] WU C H, WU F Z, GE S Y, et al. Neural news recommendation with multi-head self-attention[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, 2019: 6388-6393.
[19] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: 5998-6008.
[20] 庞俊, 刘小琪, 谷峪, 等. 基于多粒度注意力网络的知识超图链接预测[J]. 软件学报, 2023, 34(3): 1259-1276.
PANG J, LIU X Q, GU Y, et al. Knowledge hypergraph link prediction based on multi-granular attention network[J]. Journal of Software, 2023, 34(3): 1259-1276.
[21] BEER A, DRAGANOV A, HOHMA E, et al. Connecting the dots-density-connectivity distance unifies dbscan, k-center and spectral clustering[C]//Proceedings of the 29th Conference on Knowledge Discovery and Data Mining, 2023: 80-92.
[22] FARD M M, THONET T, GAUSSIER é. Deep K-means: jointly clustering with K-means and learning representations[J]. Pattern Recognition Letters, 2020, 138: 185-192.
[23] GROVER A, LESKOVEC J. node2vec: scalable feature learning for networks[C]//Proceedings of the 22nd International Conference on Knowledge Discovery and Data Mining, 2016: 855-864.
[24] HU Y P, LI X K, WANG Y J, et al. Adaptive hypergraph auto-encoder for relational data clustering[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(3): 2231-2242. |