计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (13): 26-45.DOI: 10.3778/j.issn.1002-8331.2408-0230

• 热点与综述 • 上一篇    下一篇

面向低样本的工业图像异常检测综述

郭新茹,宋丽娟,朱文倩,杜方,马子睿   

  1. 1.宁夏大学 信息工程学院,银川 750021
    2.宁夏“东数西算”人工智能与信息安全重点实验室,银川 750021
    3.宁夏大数据与人工智能省部共建协同创新中心,银川 750021
  • 出版日期:2025-07-01 发布日期:2025-06-30

Review of Low-Shot Industrial Image Anomaly Detection

GUO Xinru, SONG Lijuan, ZHU Wenqian, DU Fang, MA Zirui   

  1. 1.School of Information Engineering, Ningxia University, Yinchuan 750021, China
    2.Ningxia Key Laboratory of Artificial Intelligence and Information Security for Channeling Computing Resources from the East to the West, Yinchuan 750021, China
    3.Collaborative Innovation Center for Ningxia Big Data and Artificial Intelligence Co-founded by Ningxia Municipality and Ministry of Education, Yinchuan 750021, China
  • Online:2025-07-01 Published:2025-06-30

摘要: 异常检测是计算机视觉的重要研究方向之一,被广泛应用于工业产品检测、医疗诊断和视频监控等领域。它可以监控产品质量并快速识别不符合标准的产品,从而实现自动化质量控制。在工业图像异常检测中,由于获取大量训练样本既耗时又昂贵,因此低样本的工业图像异常检测成为研究热点和趋势。同时,大型视觉语言模型的出现推动了工业图像异常检测从单模态驱动发展到多模态融合,提高了检测的全面性。针对近四年的低样本工业图像异常检测,探讨了模态数量对异常检测性能的影响,并根据检测算法在处理数据和检测异常时采用的不同策略以及特征提取技术的提取范围对低样本异常检测方法进行分类。这旨在帮助研究人员快速了解并进一步改进异常检测技术和优化特征提取策略,从而提升低样本环境下的检测效率和准确性。此外,还对不同方法在MVTec AD和VisA数据集上的检测结果进行了对比,对比结果表明多模态融合方法中的混合特征融合在分类和分割异常方面表现突出。通过对比不同的检测技术和模型,总结了不同的低样本工业异常检测方法以及解决的问题,并讨论了未来的研究方向。

关键词: 工业图像异常检测, 低样本, 单模态驱动, 多模态融合, 混合特征融合

Abstract: Anomaly detection is a significant research direction in computer vision, widely applied in industrial product inspection, medical diagnostics, and video surveillance, among other fields. It can monitor product quality and swiftly identify products that do not meet standards, thereby achieving automated quality control. In industrial image anomaly detection, acquiring a large number of training samples is both time-consuming and costly, making low-shot industrial image anomaly detection a hot topic and trend. Meanwhile, the emergence of large-scale visual-language models has propelled industrial image anomaly detection from being driven by a single-modal driven to a multi-modal fusion, enhancing the comprehensiveness of detection. Focusing on the past four years of low-shot industrial image anomaly detection, this study explores the impact of modality quantity on anomaly detection performance, and classifies low-shot industrial image anomaly detection methods based on the different strategies adopted in handling data and detecting anomalies as well as the extraction range of feature extraction technologies. The aim is to help researchers quickly understand and further improve anomaly detection technologies and optimize feature extraction strategies, thereby enhancing detection efficiency and accuracy under low-shot conditions. Additionally, the detection results of different methods on the MVTec AD and VisA datasets are compared, showing that hybrid feature fusion in multi-modal fusion methods performs exceptionally well in anomaly classification and segmentation. By comparing different detection techniques and models, this study summarizes various low-shot industrial anomaly detection methods and the problems they address, and discusses future research directions.

Key words: industrial image anomaly detection, low-shot, single-modal driven, multi-modal fusion, hybrid feature fusion