计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (18): 1-23.DOI: 10.3778/j.issn.1002-8331.2411-0259

• 热点与综述 • 上一篇    下一篇

低资源场景下的命名实体识别研究综述

钱丽萍,崔雨婷,廉  露,陈艳鹏,黄楠楠   

  1. 1.北京建筑大学 电气与信息工程学院,北京100044
    2.北京建筑大学 建筑大数据智能处理方法研究北京市重点实验室,北京 100044
  • 出版日期:2025-09-15 发布日期:2025-09-15

Survey of Named Entity Recognition for Low-Resource Scenarios

QIAN Liping, CUI Yuting, LIAN Lu, CHEN Yanpeng, HUANG Nannan   

  1. 1.School of Electrical and Information Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
    2.Beijing Key Laboratory for Research on Intelligent Processing Method of Building Big Data, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
  • Online:2025-09-15 Published:2025-09-15

摘要: 命名实体识别是信息抽取的关键任务之一,旨在从非结构化文本中识别出特定的实体及其类型。现有的基于机器学习和深度学习的方法通常需要大量标注数据,而实际应用中获取这些数据往往受到资源、时间和成本的限制。因此,低资源场景下的命名实体识别问题已经成为一个亟待解决的挑战。系统总结并分析了现有学术成果,明确了相关任务定义,并将其在低资源场景下划分为三类;接着深入探讨了五种主要技术路径:迁移学习、数据增强、提示学习、对比学习、元学习,分析了它们的局限性及未来改进方向;介绍了相关数据集和评价指标,并总结分析了典型技术方法的实验结果。最后,从整体上分析了当前低资源命名实体识别面临的挑战及未来研究趋势。

关键词: 命名实体识别(NER), 低资源场景, 深度学习, 自然语言处理

Abstract: Named entity recognition is one of the key tasks of information extraction, which aims to identify specific entities and their types from unstructured text. The existing methods based on machine learning and deep learning usually require a large number of labeled data, but in practical applications, obtaining these data is often limited by resources, time and cost. Therefore, named entity recognition in low resource scenarios has become an urgent challenge. This paper systematically summarizes and analyzes the existing scholarship. Firstiy, it defines the relevant tasks and divides them into three categories in the low resource scenario. Then it discusses five main technical paths: transfer learning, data enhancement, prompt learning, comparative learning, and meta learning, and analyzes their limitations and future improvement directions. The paper introduces the relevant data sets and evaluation indicators, and summarizes and analyzes the experimental results of typical technical methods. Finally, the challenges and future research trends of low resource named entity recognition are analyzed as a whole.

Key words: named entity recognition (NER), low-resource scenarios, deep learning, natural language processing