
计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (17): 62-88.DOI: 10.3778/j.issn.1002-8331.2410-0267
闫铭,李雷孝,林浩,史建平,平灿
出版日期:2025-09-01
发布日期:2025-09-01
YAN Ming, LI Leixiao, LIN Hao, SHI Jianping, PING Can
Online:2025-09-01
Published:2025-09-01
摘要: 行人重识别任务通常依赖于大规模标注数据。然而,在少样本场景中,标注数据的有限性导致模型难以充分学习到类别间的判别性特征。为应对这一挑战,研究者们提出了多种方法以提升模型在数据匮乏条件下的性能表现。根据所需标注数据的依赖程度,相关研究可以归纳为以下四个主要类别:有监督学习的方法、基于弱监督学习的方法、基于半监督学习的方法、基于无监督学习的方法。随着对标注数据依赖的逐渐降低,行人重识别领域呈现出从有监督学习到无监督学习的技术发展趋势。系统性地总结了当前在数据集和评估指标上的研究现状,并对未来可能的研究方向进行了展望。
闫铭, 李雷孝, 林浩, 史建平, 平灿. 少样本行人重识别研究综述[J]. 计算机工程与应用, 2025, 61(17): 62-88.
YAN Ming, LI Leixiao, LIN Hao, SHI Jianping, PING Can. Survey of Research on Few-Shot Person Re-Identification[J]. Computer Engineering and Applications, 2025, 61(17): 62-88.
| [1] DATTA R, JOSHI D, LI J, et al. Image retrieval[J]. ACM Computing Surveys, 2008, 40(2): 1-60. [2] ZHU L, ZHU L, SHEN J, et al. Unsupervised topic hypergraph hashing for efficient mobile image retrieval[J]. IEEE Transactions on Cybernetics, 2017, 47(11): 3941-3954. [3] VIDHYALAKSHMI M K, POOVAMMAL E. A survey on face detection and person re-identification[C]//Proceedings of the International Conference on Computational Intelligence in Data Mining, 2016: 283-292. [4] XIONG M F, CHEN D, CHEN J, et al. Person re-identification with multiple similarity probabilities using deep metric learning for efficient smart security applications[J]. Journal of Parallel and Distributed Computing, 2019, 132: 230-241. [5] MAQSOOD M, YASMIN S, GILLANI S, et al. An efficient deep learning-assisted person re-identification solution for intelligent video surveillance in smart cities[J]. Frontiers of Computer Science, 2022, 17(4): 174329. [6] YU R, DOU Z Y, BAI S, et al. Hard-aware point-to-set deep metric for person re-identification[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer International Publishing, 2018: 196-212. [7] ANTONELLI S, AVOLA D, CINQUE L, et al. Few-shot object detection: a survey[J]. ACM Computing Surveys, 2022, 54(11): 1-37. [8] WANG P J, YAN Z Y, RONG X E, et al. Review of multimodal data processing techniques with limited data[J]. Journal of Image and Graphics, 2022, 27(10): 2803-2834. [9] ZOU G, FU G, GAO M, et al. A survey on metric learning in person re-identification [J]. Control and Decision, 2021, 36(7): 1547-1557. [10] WEI W Y, YANG W Z, ZUO E G, et al. Person reidentification based on deep learning: an overview[J]. Journal of Visual Communication and Image Representation, 2022, 82: 103418. [11] ZHU M, MING Z Q, YAN J R, et al. A survey on generative adversarial network based person re-identification method[J]. Journal of Computer-Aided Design & Computer Graphics, 2022, 34(2): 163-179. [12] KOSTINGER M, HIRZER M, WOHLHART P, et al. Large scale metric learning from equivalence constraints[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2012: 2288-2295. [13] TAO D P, JIN L W, WANG Y F, et al. Person re-identification by regularized smoothing KISS metric learning[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2013, 23(10): 1675-1685. [14] TAO D, JIN L, WANG Y, et al. Person reidentification by minimum classification error-based KISS metric learning[J]. IEEE Transactions on Cybernetics, 2015, 45(2): 242-252. [15] TAO D P, GUO Y A, SONG M L, et al. Person re-identification by dual-regularized KISS metric learning[J]. IEEE Transactions on Image Processing, 2016, 25(6): 2726-2738. [16] LIONG V E, LU J W, GE Y X. Regularized Bayesian metric learning for person re-identification[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer International Publishing, 2015: 209-224. [17] MA L, YANG X, TAO D. Person re-identification over camera networks using multi-task distance metric learning[J]. IEEE Transactions on Image Processing, 2014, 23(8): 3656-3670. [18] CHEN J, ZHANG Z, WANG Y. Relevance metric learning for person re-identification by exploiting listwise similarities[J]. IEEE Transactions on Image Processing, 2015, 24(12): 4741-4755. [19] LIAO S C, LI S Z. Efficient PSD constrained asymmetric metric learning for person re-identification[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 3685-3693. [20] LIONG V E, GE Y X, LU J W. Discriminative regularized metric learning for person re-identification[C]//Proceedings of the International Conference on Biometrics. Piscataway: IEEE, 2015: 52-57. [21] MATSUKAWA T, OKABE T, SATO Y. Person re-identification via discriminative accumulation of local features[C]//Proceedings of the 22nd International Conference on Pattern Recognition. Piscataway: IEEE, 2014: 3975-3980. [22] ZHANG L, XIANG T, GONG S G. Learning a discriminative null space for person re-identification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 1239-1248. [23] FEROZ ALI T M, CHAUDHURI S. Maximum margin metric learning over discriminative nullspace for person reidentification[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer International Publishing, 2018: 123-141. [24] DONG H S, LU P, LIU C P, et al. Person re-identification by kernel null space marginal Fisher analysis[J]. Pattern Recognition Letters, 2018, 107: 66-74. [25] WANG J, WANG Z, LIANG C, et al. Equidistance constrained metric learning for person re-identification[J]. Pattern Recognition, 2018, 74: 38-51. [26] FAN S H, LIN M H, JIANG J Y, et al. A few-shot learning method using feature reparameterization and dual-distance metric learning for object re-identification[J]. IEEE Access, 2021, 9: 133650-133662. [27] CHEN G Z, ZOU G F, LIU Y, et al. Few-shot person re-identification based on feature set augmentation and metric fusion[J]. Engineering Applications of Artificial Intelligence, 2023, 125: 106761. [28] KAUR P, KHEHRA B S, MAVI E B S. Data augmentation for object detection: a review[C]//Proceedings of the IEEE International Midwest Symposium on Circuits and Systems. Piscataway: IEEE, 2021: 537-543. [29] TANNER M A, WONG W H. The calculation of posterior distributions by data augmentation[J]. Journal of the American Statistical Association, 1987, 82(398): 528-540. [30] XIE Q, DAI Z, HOVY E, et al. Unsupervised data augmentation for consistency training[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems, 2020. [31] LUO X, WU H, ZHANG J, et al. A closer look at few-shot classification again[J]. arXiv:2301.12246, 2023. [32] WANG Y, YAO Q, KWOK J T, et al. Generalizing from a few examples: a survey on few-shot learning [J]. ACM Computing Surveys, 2020, 53(3): 1-34. [33] MCLAUGHLIN N, DEL RINCON J M, MILLER P, et al. Data-augmentation for reducing dataset bias in person re-identification[C]//Proceedings of the 12th IEEE International Conference on Advanced Video and Signal Based Surveillance, 2015: 1-6. [34] ZHONG Z, ZHENG L, ZHENG Z, et al. CamStyle: a novel data augmentation method for person re-identification[J]. IEEE Transactions on Image Processing, 2019, 28(3): 1176-1190. [35] WANG C, CHEN Y, CAI X. Person re-identification method based on image style transfer [J]. Journal of Beijing University of Posts Telecommunications, 2021, 44(3): 67-72. [36] JIA X, ZHONG X, YE M, et al. Complementary data augmentation for cloth-changing person re-identification[J]. IEEE Transactions on Image Processing, 2022, 31: 4227-4239. [37] WU Q, DAI P Y, CHEN P X, et al. Deep adversarial data augmentation with attribute guided for person re-identification[J]. Signal, Image and Video Processing, 2021, 15(4): 655-662. [38] LI Z, GUO J, JIAO W L, et al. Random linear interpolation data augmentation for person re-identification[J]. Multimedia Tools and Applications, 2020, 79(7): 4931-4947. [39] TORRALBA A, FERGUS R, FREEMAN W T. 80 million tiny images: a large data set for nonparametric object and scene recognition[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2008, 30(11): 1958-1970. [40] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv:1409. 1556 , 2014. [41] ZHONG Z, ZHENG L, KANG G L, et al. Random erasing data augmentation[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 13001-13008. [42] SUN W, ZHANG X, ZHANG X R, et al. Triplet erasing-based data augmentation for person re-identification[J]. International Journal of Sensor Networks, 2020, 34(4): 226. [43] GONG Y, ZENG Z, YE F. Person re-identification method based on grayscale feature enhancement[J]. Journal of Computer Applications, 2021, 41(12): 3590-3595. [44] HUANG Y K, FU X Y, ZHA Z J. Attack-guided perceptual data generation for real-world re-identification[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 215-224. [45] LIN Z C, LIU C Y, QI W B, et al. A color/illuminance aware data augmentation and style adaptation approach to person re-identification[J]. IEEE Access, 2021, 9: 115826-115838. [46] ZHANG L, JIANG N, DIAO Q S, et al. Person re-identification with pose variationaware data augmentation[J]. Neural Computing and Applications, 2022, 34(14): 11817-11830. [47] FINN C, ABBEEL P, LEVINE S. Model-agnostic meta-learning for fast adaptation of deep networks[J]. arXiv:1703. 03400, 2017. [48] NICHOL A, ACHIAM J, SCHULMAN J. On first-order meta-learning algorithms [J]. arXiv:1803.02999, 2018. [49] SONG J F, YANG Y X, SONG Y Z, et al. Generalizable person re-identification by domain-invariant mapping network[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 719-728. [50] GONG T T, CHEN K X, WANG J S, et al. Dynamically adaptive instance normalization and attention-aware incremental meta-learning for generalizable person re-identification[C]//Proceedings of the IEEE International Conference on Multimedia and Expo. Piscataway: IEEE, 2023: 2435-2440. [51] ZHAO Y Y, ZHONG Z, YANG F X, et al. Learning to generalize unseen domains via memory-based multi-source meta-learning for person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 6273-6282. [52] BAI Y, JIAO J L, CE W, et al. Person30K: a dual-meta generalization network for person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 2123-2132. [53] CHOI S, KIM T, JEONG M, et al. Meta batch-instance normalization for generalizable person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 3424-3434. [54] NI H, SONG J K, LUO X P, et al. Meta distribution alignment for generalizable person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 2477-2486. [55] YANG F X, ZHONG Z, LUO Z M, et al. Joint noise-tolerant learning and meta camera shift adaptation for unsupervised person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 4853-4862. [56] YANG F X, ZHONG Z, LIU H, et al. Learning to attack real-world models for person re-identification via virtual-guided meta-learning[[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2021: 3128-3135. [57] DU H S, HE L B, GUO J T, et al. Meta separationfusion for generalizable person re-identification[J]. Knowledge-Based Systems, 2024, 284: 111224. [58] ZHOU Z H. A brief introduction to weakly supervised lear-ning[J]. National Science Review, 2018, 5(1): 44-53. [59] YAN L, ZHENG W B, WANG F Y, et al. Weakly supervised person search[C]//Proceedings of the IEEE 7th International Conference on Data Science and Advanced Analytics. Piscataway: IEEE, 2020: 188-196. [60] SUN Y, ZHENG L, LI Y, et al. Learning part-based convolutional features for person re-identification[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2021, 43(3): 902-917. [61] WANG X P, LIU M, RAYCHAUDHURI D S, et al. Learning person re-identification models from videos with weak supervision[J]. IEEE Transactions on Image Processing, 2021, 30: 3017-3028. [62] MENG J, ZHENG W S, LAI J H, et al. Deep graph metric learning for weakly supervised person re-identification[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2022, 44(10): 6074-6093. [63] LIU M, BIAN Y, LIU Q, et al. Weakly supervised tracklet association learning with video labels for person re-identification[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2024, 46(5): 3595-3607. [64] GAO G Y, HAN C, LIU Z. Perceiving informative key-points: a self-attention approach for person search[J]. Signal Processing: Image Communication, 2022, 101: 116558. [65] GHORBEL M, AMMAR S, KESSENTINI Y, et al. Masking for better discovery: weakly supervised complementary body regions mining for person re-identification[J]. Expert Systems with Applications, 2022, 197: 116636. [66] YU H X, ZHENG W S. Weakly supervised discriminative feature learning with state information for person identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 5527-5537. [67] KONG J, TAO X F, JIANG M, et al. Weakly supervised distribution discrepancy minimization learning with state information for person re-identification[J]. IEEE Transactions on Multimedia, 2023, 25: 1903-1915. [68] LI H P, WANG Y, ZHU L W, et al. Weakly supervised cross-domain person re-identification algorithm based on small sample learning[J]. Electronics, 2023, 12(19): 4186. [69] LIU Z, MU X Y, LU Y H, et al. Learning transformer-based attention region with multiple scales for occluded person re-identification[J]. Computer Vision and Image Understanding, 2023, 229: 103652. [70] ZHANG L, LI H S, LIU R J, et al. Weakly supervised end-to-end domain adaptation for person re-identification[J]. Computers and Electrical Engineering, 2024, 113: 109055. [71] ZHENG W S, GONG S G, XIANG T. Transfer re-identification: from person to set-based verification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2012: 2650-2657. [72] WU Y, LI W, MINOH M, et al. Can feature-based inductive transfer learning help person re-identification?[C]//Proceedings of the IEEE International Conference on Image Processing. Piscataway: IEEE, 2013: 2812-2816. [73] NI T G, WANG H Y, ZHANG Z B, et al. Discriminative deep transfer metric learning for cross-scenario person re-identification[C]//Proceedings of the Conference on Real-Time Image and Video Processing, 2018. [74] GóMEZ-SILVA M J, IZQUIERDO E, ESCALERAD L A, et al. Transferring learning from multi-person tracking to person re-identification[J]. Integrated Computer-Aided Engineering, 2019, 26(4): 329-344. [75] YOSINSKI J, CLUNE J, BENGIO Y, et al. How transferable are features in deep neural networks?[C]//Proceedings of the 27th International Conference on Neural Information Processing Systems, 2014: 3320-3328. [76] YU Z X, JIN Z M, WEI L, et al. Progressive transfer learning for person re-identification[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence, 2019: 4220-4226. [77] 李博. 改进型深度迁移学习的跨镜行人追踪算法[J]. 计算机工程与应用, 2021, 57(10): 110-116. LI B. Improved deep transfer learning algorithm for person re-identification [J]. Computer Engineering and Applications, 2021, 57(10): 110-116. [78] KHAN F, BREMOND F. Cross domain residual transfer learning for person re-identification[C]//Proceedings of the IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2019: 2019-2028. [79] HE K M, ZHANG X Y, REN S Q, et al. Deep residual lear-ning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. [80] LIU X, SONG M L, TAO D C, et al. Semi-supervised coupled dictionary learning for person re-identification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 3550-3557. [81] JING X Y, ZHU X, WU F, et al. Super-resolution person re-identification with semi-coupled low-rank discriminant dictionary learning[J]. IEEE Transactions on Image Processing, 2017, 26(3): 1363-1378. [82] LI J W, MA A J, YUEN P C. Semi-supervised region metric learning for person re-identification[J]. International Journal of Computer Vision, 2018, 126(8): 855-874. [83] HUANG Y, XU J S, WU Q, et al. Multi-pseudo regularized label for generated data in person re-identification[J]. IEEE Transactions on Image Processing, 2019, 28(3): 1391-1403. [84] LIU W H, CHANG X J, CHEN L, et al. Pair-based uncertainty and diversity promoting early active learning for person re-identification[J]. ACM Transactions on Intelligent Systems and Technology, 2020, 11(2): 1-15. [85] ZHU S D, ZHANG Y Z, FENG Y. GW-Net: an efficient grad-CAM consistency neural network with weakening of random erasing features for semi-supervised person re-identification[J]. Image and Vision Computing, 2023, 137: 104790. [86] ZHU H, HUANG L, WEI Z Q, et al. Learning camera invariant deep features for semi-supervised person re-identific-ation[J]. Multimedia Tools and Applications, 2022, 81(13): 18671-18692. [87] LIU J, LIN M Q, ZHAO M B, et al. Person re-identification via semi-supervised adaptive graph embedding[J]. Applied Intelligence, 2023, 53(3): 2656-2672. [88] TENG X, LAN L, ZHAO J, et al. Highly efficient active learning with tracklet-aware co-cooperative annotators for person re-identification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(11): 15687-15700. [89] LIU Z Q, LIN Y T, LIU T Y, et al. Reliable cross-camera learning in random camera person re-identification[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2024, 34(6): 4556-4567. [90] CHEN X Y, NIU Y, DU F W, et al. Improving the performance of semi-supervised person re-identification by selec-ting reliable unlabeled samples[J]. Engineering Applications of Artificial Intelligence, 2024, 133: 108367. [91] SOLORIO-FERNáNDEZ S, CARRASCO-OCHOA J A, MARTíNEZ-TRINIDAD J F. A review of unsupervised feature selection methods[J]. Artificial Intelligence Review, 2020, 53(2): 907-948. [92] LISANTI G, MASI I, BAGDANOV A D, et al. Person re-identification by iterative re-weighted sparse ranking[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2015, 37(8): 1629-1642. [93] FARENZENA M, BAZZANI L, PERINA A, et al. Person re-identification by symmetry-driven accumulation of local features[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2010: 2360-2367. [94] ZHAO R, OUYANG W L, WANG X G. Unsupervised sal-ience learning for person re-identification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2013: 3586-3593. [95] PENG P X, XIANG T, WANG Y W, et al. Unsupervised cross-dataset transfer learning for person re-identification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 1306-1315. [96] ZHAO C R, WANG X K, CHEN Y P, et al. Consistent iterative multi-view transfer learning for person re-identification[C]//Proceedings of the IEEE International Conference on Computer Vision Workshops. Piscataway: IEEE, 2017: 1087-1094. [97] LIU G Q, WU J Z. Unsupervised person re-identification by intrainter camera affinity domain adaptation[J]. Journal of Visual Communication and Image Representation, 2021, 80: 103310. [98] ZHENG L, YANG Y, HAUPTMANN A G. Person re-identification: past, present and future[J]. arXiv:1610.02984, 2016. [99] CHEN H R, WANG Y W, SHI Y M, et al. Deep transfer learning for person re-identification[C]//Proceedings of the IEEE 4th International Conference on Multimedia Big Data. Piscataway: IEEE, 2018: 1-5. [100] CHEN F, WANG N, TANG J, et al. A feature disentangling approach for person re-identification via self-supervised data augmentation[J]. Applied Soft Computing, 2021, 100: 106939. [101] LIU X B, ZHANG S L, YANG M. Self-guided hash coding for large-scale person re-identification[C]//Proceedings of the IEEE Conference on Multimedia Information Processing and Retrieval. Piscataway: IEEE, 2019: 246-251. [102] FU G, ZOU G, MAO S, et al. Small sample person re-identification combining Gabor features and convolution features [J]. Journal of Shandong University Engineering Science, 2021, 51(3): 22-29. [103] HUI Y, LIANG Y Y, HU X H, et al. Person re-identification combined with style transfer and pose generation[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2022, 36(2): 2256003. [104] CHEN X M, ZHENG X T, ZHU K J, et al. Fully unsupervised person re-identification by enhancing cluster samples[C]//Proceedings of the 7th International Conference on Communication and Information Processing. New York: ACM, 2021: 70-73. [105] DUBOURVIEUX F, LOESCH A, AUDIGIER R, et al. Improving unsupervised domain adaptive re-identification via source-guided selection of pseudo-labeling hyperparameters[J]. IEEE Access, 2021, 9: 149780-149795. [106] ZHANG X Y, LI D D, WANG Z G, et al. Implicit sample extension for unsupervised person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 7359-7368. [107] LIU T, CHENG S L, DU A Y. Multi-view similarity aggregation and multi-level gap optimization for unsupervised person re-identification[J]. Expert Systems with Applications, 2024, 256: 124924. [108] ZHANG Y, ZHANG F H, JIN Y, et al. Local correlation ensemble with GCN based on attention features for cross-domain person re-ID[J]. ACM Transactions on Multimedia Computing Communications and Applications, 2023, 19(2): 1-22. [109] 彭锦佳, 王辉兵. 基于异构卷积神经网络集成的无监督行人重识别方法 [J]. 电子学报, 2023, 51(10): 2902-2914. PENG J J, WANG H B. An unsupervised person re-identification method based on heterogeneous convolutional neural networks ensemble[J]. Acta Electronica Sinica, 2023, 51(10): 2902-2914. [110] JI H, WANG L, ZHOU S, et al. Meta pairwise relationship distillation for unsupervised person re-identification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2025, 36(5): 9165-9179. [111] LIU Y X, GE H W, WANG Z, et al. Discriminative identity-feature exploring and differential aware learning for unsupervised person re-identification[J]. IEEE Transactions on Multimedia, 2024, 26: 623-636. [112] LUO X, JIANG M, KONG J, et al. Hierarchical camera-aware contrast extension for unsupervised person re-identification[J]. IEEE Transactions on Multimedia, 2024, 26: 7636-7648. [113] WANG X P, LIU M, WANG F, et al. Relation-preserving feature embedding for unsupervised person re-identification[J]. IEEE Transactions on Multimedia, 2024, 26: 714-723. [114] XUAN S, ZHANG S. Intra-Inter domain similarity for unsupervised person re-identification[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2024, 46(3): 1711-1726. [115] RAN Z D, LU X B, WEI X, et al. Camera-aware graph multi-domain adaptive learning for unsupervised person re-identification[J]. Pattern Recognition, 2025, 161: 111217. [116] SI T Z, HE F Z, ZHANG Z, et al. Hybrid contrastive learning for unsupervised person re-identification[J]. IEEE Transa-ctions on Multimedia, 2023, 25: 4323-4334. [117] GRAY D, BRENNAN S, TAO H. Evaluating appearance models for recognition, reacquisition, and tracking[C]//Proceedings of the 10th IEEE International Workshop on Performance Evaluation of Tracking and Surveillance, 2007: 1-7. [118] ZHENG L, SHEN L Y, TIAN L, et al. Scalable person re-identification: a benchmark[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 1116-1124. [119] LI W, ZHAO R, XIAO T, et al. DeepReID: deep filter pairing neural network for person re-identification[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 152-159. [120] ZHENG Z D, ZHENG L, YANG Y. Unlabeled samples generated by GAN improve the person re-identification baseline in vitro[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 3774-3782. [121] WEI L H, ZHANG S L, GAO W, et al. Person transfer GAN to bridge domain gap for person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 79-88. [122] NI H, LI Y K, GAO L L, et al. Part-aware transformer for generalizable person re-identification[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 11246-11255. [123] ZHANG Y Q, QIAN Q, WANG H S, et al. Graph convol-ution based efficient re-ranking for visual retrieval[J]. IEEE Transactions on Multimedia, 2024, 26: 1089-1101. [124] LEE G, LEE S, KIM D, et al. Camera-driven represent-ation learning for unsupervised domain adaptive person re-identification[C]//Proceedings of the IEEE/CVF Intern-ational Conference on Computer Vision. Piscataway: IEEE, 2023: 11419-11428. [125] ZHANG Y K, WANG H Z. Diverse embedding expansion network and low-light cross-modality benchmark for visible-infrared person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 2153-2162. [126] YANG B, CHEN J, YE M. Shallow-deep collaborative learning for unsupervised visible-infrared person re-identification[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 16870-16879. [127] YUAN Y, ZHANG J A, WANG Q. Bike-person re-identification: a benchmark and a comprehensive evaluation[J]. IEEE Access, 2018, 6: 56059-56068. [128] FIGUEIREDO A, BRAYAN J, REIS R O, et al. MoRe: a large-scale motorcycle re-identification dataset[C]//Proceedings of the IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2021: 4033-4042. [129] CONG K X, WANG Y F, YANG J, et al. E-ReID: an e-bike re-identification system based on multi-object instance segmentation and retrieval[C]//Proceedings of the IEEE Intelligent Vehicles Symposium. Piscataway: IEEE, 2024: 2814-2819. |
| [1] | 陈浞, 刘东青, 唐平华, 黄燕, 张文霞, 贾岩, 程海峰. 面向目标检测的物理对抗攻击研究进展[J]. 计算机工程与应用, 2025, 61(9): 80-101. |
| [2] | 宋存利, 杨佳俊, 张雪松. 雾天遥感小目标检测的双子网算法[J]. 计算机工程与应用, 2025, 61(9): 128-138. |
| [3] | 张恒, 黄农森, 丁家松, 杭芹. 无人机视觉识别系统的物理对抗攻击方法[J]. 计算机工程与应用, 2025, 61(9): 211-220. |
| [4] | 杨鸿丹, 付贵, 邵慧超, 汪艺欣, 邵延华, 楚红雨, 邓琥. 融合多尺度层级特征的航拍小目标检测[J]. 计算机工程与应用, 2025, 61(9): 230-241. |
| [5] | 李明, 何志奇, 党青霞, 朱胜利. 面向户外导盲场景的道路目标检测算法[J]. 计算机工程与应用, 2025, 61(9): 242-254. |
| [6] | 孟维超, 卞春江, 聂宏宾. 复杂背景下低信噪比红外弱小目标检测方法[J]. 计算机工程与应用, 2025, 61(8): 183-193. |
| [7] | 谢斌红, 唐彪, 张睿. UBA-OWDT:一种新型的开放世界目标检测网络[J]. 计算机工程与应用, 2025, 61(8): 215-225. |
| [8] | 陈宇, 权冀川. 伪装目标检测:发展与挑战[J]. 计算机工程与应用, 2025, 61(7): 42-60. |
| [9] | 翟慧英, 郝汉, 李均利, 占志峰. 铁路设施无人机自主巡检算法研究综述[J]. 计算机工程与应用, 2025, 61(7): 61-80. |
| [10] | 李彬, 李生林. 改进YOLOv11n的无人机小目标检测算法[J]. 计算机工程与应用, 2025, 61(7): 96-104. |
| [11] | 江旺玉, 王乐, 姚叶鹏, 毛国君. 多尺度特征聚合扩散和边缘信息增强的小目标检测算法[J]. 计算机工程与应用, 2025, 61(7): 105-116. |
| [12] | 操振, 余朝刚, 靳胜洁, 王帅鹏, 朱文良. 基于改进YOLOv10的喷码微小字符精确定位算法[J]. 计算机工程与应用, 2025, 61(7): 153-164. |
| [13] | 卢敏, 胡振宇. 通信延迟下车辆协同感知的3D目标检测方法[J]. 计算机工程与应用, 2025, 61(7): 278-287. |
| [14] | 刘奎, 唐慧萍, 苏本跃. 门控卷积和高频特征融合的红外小目标检测[J]. 计算机工程与应用, 2025, 61(7): 306-314. |
| [15] | 黄德启, 黄海峰, 黄德意, 刘振航. BEV感知学习在自动驾驶中的应用综述[J]. 计算机工程与应用, 2025, 61(6): 1-21. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||