[1] DROBNITZKY M, FRIEDERICH J, EGGER B, et al. Survey and systematization of 3D object detection models and methods[J]. The Visual Computer, 2024, 40(3): 1867-1913.
[2] LU B, SUN Y, YANG Z Y, et al. HRNet: 3D object detection network for point cloud with hierarchical refinement[J]. Pattern Recognition, 2024, 149: 110254.
[3] 田枫, 宗内丽, 刘芳, 等. 多模态融合的三维目标检测方法研究[J]. 计算机工程与应用, 2024, 60(13): 113-123.
TIAN F, ZONG N L, LIU F, et al. Research on 3D object detection method based on multi-modal fusion[J]. Computer Engineering and Applications, 2024, 60(13): 113-123.
[4] 李红岩, 徐保庆, 张子扬, 等. 基于全局上下文信息的遥感图像小目标检测[J]. 光学学报, 2024, 44(24): 2428004.
LI H Y, XU B Q, ZHANG Z Y, et al. Small target detection in remote sensing images based on global context information[J]. Acta Optica Sinica, 2024, 44(24): 2428004.
[5] 李文举, 储王慧, 崔柳, 等. 结合图采样和图注意力的3D目标检测方法[J]. 计算机工程与应用, 2023, 59(9): 237-244.
LI W J, CHU W H, CUI L, et al. 3D object detection method combining on graph sampling and graph attention[J]. Computer Engineering and Applications, 2023, 59(9): 237-244.
[6] 李文礼, 喻飞, 石晓辉, 等. BEV特征下激光雷达和单目相机融合的目标检测算法研究[J]. 计算机工程与应用, 2024, 60(11): 182-193.
LI W L, YU F, SHI X H, et al. Research on target detection algorithm for fusion of lidar and monocular camera under BEV features[J]. Computer Engineering and Applications, 2024, 60(11): 182-193.
[7] CHEN X Z, MA H M, WAN J, et al. Multi-view 3D object detection network for autonomous driving[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 6526-6534.
[8] LIANG M, YANG B, WANG S L, et al. Deep continuous fusion for multi-sensor 3D object detection[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer, 2018: 663-678.
[9] LI Z H, CUI Y B, LIN Y, et al. MMF-track: multi-modal multi-level fusion for 3D single object tracking[J]. IEEE Transactions on Intelligent Vehicles, 2024, 9(1): 1817-1829.
[10] CHEN Y K, LI Y W, ZHANG X Y, et al. Focal sparse convolutional networks for 3D object detection[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 5418-5427.
[11] XU D F, ANGUELOV D, JAIN A. PointFusion: deep sensor fusion for 3D bounding box estimation[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 244-253.
[12] SINDAGI V A, ZHOU Y, TUZEL O. MVX-Net: multimodal VoxelNet for 3D object detection[C]//Proceedings of the 2019 International Conference on Robotics and Automation. Piscataway: IEEE, 2019: 7276-7282.
[13] VORA S, LANG A H, HELOU B, et al. PointPainting: sequential fusion for 3D object detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 4603-4611.
[14] MA J M, SHI G, LI Y X, et al. MAFF-Net: multi-attention guided feature fusion network for change detection in remote sensing images[J]. Sensors, 2022, 22(3): 888.
[15] HUANG T T, LIU Z, CHEN X W, et al. EPNet: enhancing point features with image semantics for 3D object detection[C]//Proceedings of the 16th European Conference on Computer Vision. Cham: Springer, 2020: 35-52.
[16] YOO J H, KIM Y, KIM J, et al. 3D-CVF: generating joint camera and LiDAR features using cross-view spatial feature fusion for 3D object detection[C]//Proceedings of the 16th European Conference on Computer Vision. Cham: Springer International Publishing, 2020: 720-736.
[17] LANG A H, VORA S, CAESAR H, et al. PointPillars: fast encoders for object detection from point clouds[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 12689-12697.
[18] CHARLES R Q, HAO S, MO K C, et al. PointNet: deep learning on point sets for 3D classification and segmentation[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 77-85.
[19] YOU X, DING M, ZHANG M H, et al. PnPNet: pull-and-push networks for volumetric segmentation with boundary confusion[J]. arXiv:2312.08323, 2023.
[20] SHAKER A, MAAZ M, RASHEED H, et al. SwiftFormer: efficient additive attention for transformer-based real-time mobile vision applications[C]//Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 17379-17390.
[21] SHAO H, ZENG Q S, HOU Q B, et al. MCANet: medical image segmentation with multi-scale cross-axis attention[J]. arXiv:2312.08866, 2023.
[22] GUO M H, LU C Z, HOU Q B, et al. SegNeXt: rethinking convolutional attention design for semantic segmentation[J]. arXiv:2209.08575, 2022.
[23] YAN Y, MAO Y X, LI B. SECOND: sparsely embedded convolutional detection[J]. Sensors, 2018, 18(10): 3337.
[24] GEIGER A, LENZ P, URTASUN R. Are we ready for autonomous driving? The KITTI vision benchmark suite[C]//Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2012: 3354-3361.
[25] ZHOU Y, TUZEL O. VoxelNet: end-to-end learning for point cloud based 3D object detection[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 4490-4499.
[26] LIU Z, ZHAO X, HUANG T T, et al. TANet: robust 3D object detection from point clouds with triple attention[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 11677-11684.
[27] KU J, MOZIFIAN M, LEE J, et al. Joint 3D proposal generation and object detection from view aggregation[C]//Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE, 2018: 1-8.
[28] QI C R, LIU W, WU C X, et al. Frustum PointNets for 3D object detection from RGB-D data[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 918-927.
[29] XIE L, XIANG C, YU Z X, et al. PI-RCNN: an efficient multi-sensor 3D object detector with point-based attentive cont-conv fusion module[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020: 12460-12467.
[30] ZHANG J, XU D, LI Y S, et al. FusionPillars: a 3D object detection network with cross-fusion and self-fusion[J]. Remote Sensing, 2023, 15(10): 2692.
[31] XIE G T, CHEN Z Y, GAO M, et al. PPF-Det: point-pixel fusion for multi-modal 3D object detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(6): 5598-5611.
[32] SONG Z Y, ZHANG G X, XIE J, et al. VoxelNextFusion: a simple, unified and effective voxel fusion framework for multi-modal 3D object detection[J]. arXiv:2401.02702, 2024.
[33] LIU M Y, CHEN Y P, XIE J M, et al. MENet: multi-modal mapping enhancement network for 3D object detection in autonomous driving[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(8): 9397-9410.
[34] SHAO Y X, TAN A H, SUN Z T, et al. PV-SSD: a multi-modal point cloud 3D object detector based on projection features and voxel features[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2024, 8(5): 3436-3449.
[35] NIE C, JU Z Y, SUN Z F, et al. 3D object detection and tracking based on lidar-camera fusion and IMM-UKF algorithm towards highway driving[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2023, 7(4): 1242-1252.
[36] ZHOU J, LIN T X, GONG Z X, et al. SIANet: 3D object detection with structural information augment network[J]. IET Computer Vision, 2024, 18(5): 682-695.
[37] SHI W J, RAJKUMAR R. Point-GNN: graph neural network for 3D object detection in a point cloud[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 1708-1716.
[38] WANG Z X, JIA K. Frustum ConvNet: sliding Frustums to aggregate local point-wise features for amodal 3D object detection[C]//Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE, 2019: 1742-1749.
[39] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[40] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778. |