[1] MA K X, ILIEVSKI F, FRANCIS J, et al. Knowledge-driven data construction for zero-shot evaluation in commonsense question answering[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(15): 13507-13515.
[2] WANG W Q, FANG T Q, DING W X, et al. CAR: conceptuali-zation-augmented reasoner for zero-shot commonsense question answering[C]//Findings of the Association for Computational Linguistics: EMNLP 2023. Stroudsburg: ACL, 2023: 13520-13545.
[3] ZHANG J R, ILIEVSKI F, MA K X, et al. An empirical investigation of commonsense self-supervision with knowledge graphs[J]. arXiv:2205.10661, 2022.
[4] KIM Y J, KWAK B W, KIM Y, et al. Modularized transfer learning with multiple knowledge graphs for zero-shot commonsense reasoning[C]//Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. Stroudsburg: ACL, 2022: 2244-2257.
[5] GUAN X, CAO B W, GAO Q Q, et al. Multi-hop commonsense knowledge injection framework for zero-shot commonsense question answering[J]. arXiv:2305.05936, 2023.
[6] SHWARTZ V, WEST P, LE BRAS R, et al. Unsupervised commonsense question answering with self-talk[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2020: 4615-4629.
[7] BANERJEE P, BARAL C. Self-supervised knowledge triplet learning for zero-shot question answering[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2020: 151-162.
[8] BHAGAVATULA C, LE BRAS R, MALAVIYA C, et al. Abd-uctive commonsense reasoning[J]. arXiv:1908.05739, 2019.
[9] BISK Y, ZELLERS R, LE BRAS R, et al. PIQA: reasoning about physical commonsense in natural language[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(5): 7432-7439.
[10] SAKAGUCHI K, LE BRAS R, BHAGAVATULA C, et al. WinoGrande: an adversarial winograd schema challenge at scale[J]. Communications of the ACM, 2021, 64(9): 99-106.
[11] DOU Z Y, PENG N Y. Zero-shot commonsense question answ-ering with cloze translation and consistency optimization[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36(10): 10572-10580.
[12] BOSSELUT A, LE BRAS R, CHOI Y. Dynamic neuro-symbolic knowledge graph construction for zero-shot commonsense question answering[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(6): 4923-4931.
[13] PFEIFFER J, KAMATH A, RüCKLé A, et al. AdapterFusion: non-destructive task composition for transfer learning[C]//Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume. Stroudsburg: ACL, 2021: 487-503.
[14] SHI H C, WANG W Q, FANG T Q, et al. QADYNAMICS: training dynamics-driven synthetic QA diagnostic for zero-shot commonsense question answering[C]//Findings of the Association for Computational Linguistics: EMNLP 2023. Stroudsburg: ACL, 2023: 15329-15341.
[15] HOULSBY N, GIURGIU A, JASTRZEBSKI S, et al. Parameter-efficient transfer learning for NLP[C]//Proceedings of the 36th International Conference on Machine Learning, 2019: 2790-2799.
[16] WANG R Z, TANG D Y, DUAN N, et al. K-adapter: infusing knowledge into pre-trained models with adapters[C]//Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021. Stroudsburg: ACL, 2021: 1405-1418.
[17] HE J X, ZHOU C T, MA X Z, et al. Towards a unified view of parameter-efficient transfer learning[J]. arXiv:2110.04366, 2021.
[18] LEI T, BAI J W, BRAHMA S, et al. Conditional adapters: parameter-efficient transfer learning with fast inference[C]//Advances in Neural Information Processing Systems 36, 2023: 8152-8172.
[19] DIAO S Z, XU T Y, XU R J, et al. Mixture-of-domain-adapters: decoupling and injecting domain knowledge to pre-trained language models memories[J]. arXiv:2306.05406, 2023.
[20] PENG H M. A comprehensive overview and survey of recent advances in meta-learning[J]. arXiv:2004.11149, 2020.
[21] VINYALS O, BLUNDELL C, LILLICRAP T, et al. Matching networks for one shot learning[J]. arXiv:1606.04080, 2016.
[22] SNELL J, SWERSKY K, ZEMEL R S. Prototypical networks for few-shot learning[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: 4080-4090.
[23] SANTORO A, BARTUNOV S, BOTVINICK M M, et al. Meta-learning with memory-augmented neural networks[C]//Proceedings of the 33rd International Conference on Machine Learning, 2016: 1842-1850.
[24] MUNKHDALAI T, YU H. Meta networks[C]//Proceedings of the 34th International Conference on Machine Learning, 2017: 2554-2563.
[25] FINN C, ABBEEL P, LEVINE S. Model-agnostic meta-learning for fast adaptation of deep networks[C]//Proceedings of the 34th International Conference on Machine Learning, 2017: 1126-1135.
[26] NICHOL A, ACHIAM J, SCHULMAN J. On first-order meta-learning algorithms[J]. arXiv:1803.02999, 2018.
[27] MAURYA K K, DESARKAR M S. Meta-XNLG: a meta-learning approach based on language clustering for zero-shot cross-lingual transfer and generation[C]//Findings of the Association for Computational Linguistics: ACL 2022. Stroudsburg: ACL, 2022: 269-284.
[28] XU X F, BAO X L, LU X Y, et al. An end-to-end deep generative approach with meta-learning optimization for zero-shot object classification[J]. Information Processing & Management, 2023, 60(2): 103233.
[29] 刘兵, 杨娟, 汪荣贵, 等. 结合记忆与迁移学习的小样本学习[J]. 计算机工程与应用, 2022, 58(19): 242-249.
LIU B, YANG J, WANG R G, et al. Memory-based transfer learning for few-shot learning[J]. Computer Engineering and Applications, 2022, 58(19): 242-249.
[30] 苏庆, 林佳锐, 黄海滨, 等. 融合MAML和CBAM的安卓恶意应用家族分类模型[J]. 计算机工程与应用, 2023, 59(2): 271-279.
SU Q, LIN J R, HUANG H B, et al. Android malicious application family classification model incorporating MAML and CBAM[J]. Computer Engineering and Applications, 2023, 59(2): 271-279.
[31] YAN M, ZHANG H, JIN D, et al. Multi-source meta transfer for low resource multiple-choice question answering[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 7331-7341.
[32] ZHAO Y Y, ZHONG Z, YANG F X, et al. Learning to generalize unseen domains via memory-based multi-source meta-learning for person re-identification[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 6273-6282.
[33] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems 30, 2017: 5998-6008.
[34] SPEER R, CHIN J, HAVASI C. ConceptNet 5.5: an open multilingual graph of general knowledge[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2017, 31(1): 4444-4451.
[35] VRANDE?I? D, KR?TZSCH M. Wikidata: a free collaborative knowledgebase[J]. Communications of the ACM, 2014, 57(10): 78-85.
[36] MILLER G A. WordNet: a lexical database for English[J]. Communications of the ACM, 1995, 38(11): 39-41.
[37] SAP M, LE BRAS R, ALLAWAY E, et al. ATOMIC: an atlas of machine commonsense for if-then reasoning[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33(1): 3027-3035.
[38] LIU Y, OTT M, GOYAL N, et al. RoBERTa: a robustly optimized BERT pretraining approach[C]//Proceedings of the 20th Chinese National Conference on Computational Linguistics, 2021: 1218-1227.
[39] TOUVRON H, LAVRIL T, IZACARD G, et al. LLaMA: open and efficient foundation language models[J]. arXiv:2302.13971, 2023. |