[1] 梁斌, 林子杰, 徐睿峰, 等. 面向话题的讽刺识别: 新任务、新数据和新方法[J]. 中文信息学报, 2023, 37(2): 138-147.
LIANG B, LIN Z J, XU R F, et al. Topic-oriented sarcasm detection: new task, new dataset and new methond[J]. Journal of Chinese Information Processing, 2023, 37(2): 138-147.
[2] REN Y F, WANG Z L, PENG Q, et al. A knowledge-augmented neural network model for sarcasm detection[J]. Information Processing & Management, 2023, 60(6): 103521.
[3] HE Y L, CHEN M J, HE Y Y, et al. Sarcasm detection base on adaptive incongruity extraction network and incongruity cross-attention[J]. Applied Sciences, 2023, 13(4): 2102.
[4] PAN H, LIN Z, FU P, et al. Modeling the incongruity between sentence snippets for sarcasm detection[C]//Findings of the Association for Computational Linguistics: EMNLP, 2020: 2132-2139.
[5] WANG X B, DONG Y Q, JIN D, et al. Augmenting affective dependency graph via iterative incongruity graph learning for sarcasm detection[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2023: 4702-4710.
[6] SREELAKSHMI K, RAFEEQUE P C. An effective approach for detection of sarcasm in tweets[C]//Proceedings of the International CET Conference on Control, Communication, and Computing. Piscataway: IEEE, 2018: 377-382.
[7] HUANG P L, ZENG X W, WENG J T, et al. SICKNet: a humor detection network integrating semantic incongruity and commonsense knowledge[C]//Proceedings of the IEEE 34th International Conference on Tools with Artificial Intelligence. Piscataway: IEEE, 2022: 288-296.
[8] RILOFF E, QADIR A, SURVE P, et al. Sarcasm as contrast between a positive sentiment and negative situation[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2013: 704-714.
[9] MAYNARD D, GREENWOOD M. Who cares about sarcastic tweets? investigating the impact of sarcasm on sentiment analysis[C]//Proceedings of the International Conference on Language Resources and Evaluation, 2014.
[10] BHARTI S K, BABU K S, JENA S K. Parsing-based sarcasm sentiment recognition in twitter data[C]//Proceedings of the IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. New York: ACM, 2015: 1373-1380.
[11] GOVINDAN V, BALAKRISHNAN V. A machine learning approach in analysing the effect of hyperboles using negative sentiment tweets for sarcasm detection[J]. Journal of King Saud University-Computer and Information Sciences, 2022, 34(8): 5110-5120.
[12] 韦斯羽, 朱广丽, 谈光璞, 等. 融合反讽语言特征的反讽语句识别模型[J]. 智能系统学报, 2024, 19(3): 689-696.
WEI S Y, ZHU G L, TAN G P, et al. Ironic sentence recognition model integrating ironic language features[J]. CAAI Transactions on Intelligent Systems, 2024, 19(3): 689-696.
[13] VINOTH D, PRABHAVATHY P. An intelligent machine learning-based sarcasm detection and classification model on social networks[J]. The Journal of Supercomputing, 2022, 78(8): 10575-10594.
[14] PANDEY R, SINGH J P. BERT-LSTM model for sarcasm detection in code-mixed social media post[J]. Journal of Intelligent Information Systems, 2023, 60(1): 235-254.
[15] ZHANG Y Z, MA D, TIWARI P, et al. Stance-level sarcasm detection with BERT and stance-centered graph attention networks[J]. ACM Transactions on Internet Technology, 2023, 23(2): 1-21.
[16] 樊小超, 杨亮, 林鸿飞, 等. 基于多语义融合的反讽识别[J]. 中文信息学报, 2021, 35(6): 103-111.
FAN X C, YANG L, LIN H F, et al. Irony recognition based on multiple semantic fusion[J]. Journal of Chinese Information Processing, 2021, 35(6): 103-111.
[17] WEN Z Y, GUI L, WANG Q L, et al. Sememe knowledge and auxiliary information enhanced approach for sarcasm detection[J]. Information Processing & Management, 2022, 59(3): 102883.
[18] ZHANG S X, ZHU A Q, ZHU G L, et al. Building fake review detection model based on sentiment intensity and PU lear-ning[J]. IEEE Transactions on Neural Networks and Lear-ning Systems, 2023, 34(10): 6926-6939.
[19] DU Y, LI T, PATHAN M S, et al. An effective sarcasm detection approach based on sentimental context and individual expression habits[J]. Cognitive Computation, 2022, 14(1): 78-90.
[20] 魏鹏飞, 曾碧, 廖文雄. 基于RoBERTa的社交媒体会话中的讽刺检测模型[J]. 计算机工程与应用, 2022, 58(13): 164-170.
WEI P F, ZENG B, LIAO W X. RoBERTa-based sarcasm detection model in conversation threads from social media[J]. Computer Engineering and Applications, 2022, 58(13): 164-170.
[21] LI J N, PAN H L, LIN Z, et al. Sarcasm detection with commonsense knowledge[J]. ACM Transactions on Audio, Speech, and Language Processing, 2021, 29: 3192-3201.
[22] MENG J N, ZHU Y L, SUN S C, et al. Sarcasm detection based on BERT and attention mechanism[J]. Multimedia Tools and Applications, 2024, 83(10): 29159-29178.
[23] CHEN W Q, LIN F Q, ZHANG X, et al. Jointly learning sentimental clues and context incongruity for sarcasm detection[J]. IEEE Access, 2022, 10: 48292-48300.
[24] DEVLIN J, CHANG M W, LEE K, et al. BERT: PRE-training of deep bidirectional transformers for language understa-nding[J]. arXiv:1810.04805, 2018.
[25] ZHOU P, SHI W, TIAN J, et al. Attention-based bidirectional long short-term memory networks for relation classification[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2016: 207-212.
[26] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
[27] MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[J]. arXiv:1301. 3781, 2013.
[28] LOU C W, LIANG B, GUI L, et al. Affective dependency graph for sarcasm detection[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2021: 1844-1849. |