计算机工程与应用 ›› 2025, Vol. 61 ›› Issue (18): 290-299.DOI: 10.3778/j.issn.1002-8331.2405-0311

• 网络、通信与安全 • 上一篇    下一篇

基于动态时空Transformer的城市蜂窝网络流量预测方法

于江燕,王倩,孟宪静,张瑞敏,耿蕾蕾   

  1. 1.山东财经大学 计算机科学与技术学院,济南 250014
    2.山东省区块链金融重点实验室,济南 250014
  • 出版日期:2025-09-15 发布日期:2025-09-15

Dynamic Spatial Temporal Transformer for Citywide Cellular Traffic Prediction

YU Jiangyan, WANG Qian, MENG Xianjing, ZHANG Ruimin, GENG Leilei   

  1. 1.School of Computer Science and Technology, Shandong University of Finance and Economics, Jinan 250014, China
    2.Shandong Key Laboratory of Blockchain in Finance, Shandong University of Finance and Economics, Jinan 250014, China
  • Online:2025-09-15 Published:2025-09-15

摘要: 针对现有的城市蜂窝网络流量预测方法没有考虑到小区间空间相关性的动态性以及不同时间跨度下小区间空间相关性的多样性问题,提出基于动态时空Transformer的城市蜂窝网络流量预测模型(DSTTNet)。提出多尺度时间感知空间Transformer模块MSTAST,通过分时间段建模小区间的空间相关性,实现小区间动态空间关系的捕获;通过引入多分支结构,在不同的分支上使用不同的时间段划分方式来捕获不同的空间相关性,从而提高空间相关性建模的准确性;基于MSTAST和时间Transformer模块构建时空序列建模模块来捕获城市蜂窝网络流量中的长时间依赖关系和动态空间依赖关系;还将MSTAST应用于特征融合模块,以提高模型对预测特征中远距离小区间全局空间关系的捕获能力。实验结果表明,在RMSE评价指标下,所提模型在SMS、Call、Internet三种网络流量数据集上分别提升了5.43%、4.30%、2.86%。

关键词: 蜂窝网络流量预测, 时空数据挖掘, Transformer, 注意力机制, 无线网络

Abstract: Existing citywide cellular traffic prediction methods fail to consider the dynamic nature of spatial correlations between cells, as well as the diversity of spatial correlations. To address these issues, this research introduces a citywide cellular traffic prediction model named dynamic spatial temporal transformer network (DSTTNet). Initially, a multi-scale time aware spatial Transformer module (MSTAST) is proposed to capture dynamic spatial relationships by modeling the spatial correlation in different time periods. By introducing a multi-branch structure, different time period divisions are utilized on different branches to capture diverse spatial correlations. The features from different branches complement each other, thereby enhancing the accuracy of spatial correlation modeling. Subsequently, a spatiotemporal series modeling module, based on MSTAST and temporal Transformer module, is constructed to capture long-term dependencies and dynamic spatial dependencies in citywide cellular traffic. Furthermore, MSTAST is integrated into the feature fusion module to enhance the model’s capability in capturing global spatial relationships between distant intervals in predicted features. Experimental results show that under the RMSE evaluation metric, the proposed model improves by 5.43%, 4.30% and 2.86% on the three cellular traffic datasets: SMS, Call and Internet, respectively.

Key words: citywide cellular traffic prediction, spatial temporal data mining, Transformer, attention mechanism, wireless networks