[1] LIN J S, CHEN Y J, ZHENG H F, et al. A data-driven base station sleeping strategy based on traffic prediction[J]. IEEE Transactions on Network Science and Engineering, 2024, 11(6): 5627-5643.
[2] 康梦轩, 宋俊平, 范鹏飞, 等. 基于深度学习的网络流量预测研究综述[J]. 计算机工程与应用, 2021, 57(10): 1-9.
KANG M X, SONG J P, FAN P F, et al. Survey of network traffic forecast based on deep learning[J]. Computer Engineering and Applications, 2021, 57(10): 1-9.
[3] JIANG N, DENG Y S, NALLANATHAN A. Traffic prediction and random access control optimization: learning and non-learning-based approaches[J]. IEEE Communications Magazine, 2021, 59(3): 16-22.
[4] FERREIRA D, BRAGA REIS A, SENNA C, et al. A forecasting approach to improve control and management for 5G networks[J]. IEEE Transactions on Network and Service Management, 2021, 18(2): 1817-1831.
[5] GO?CIE? R. Efficient dynamic routing in elastic optical networks based on traffic prediction and bandwidth reservation[C]//Proceedings of the 2023 23rd International Conference on Transparent Optical Networks. Piscataway: IEEE, 2023: 1-4.
[6] ZHOU X H, BILAL M, DOU R H, et al. Edge computation offloading with content caching in 6G-enabled IoV[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(3): 2733-2747.
[7] GU B, ZHAN J H, GONG S M, et al. A spatial-temporal transformer network for city-level cellular traffic analysis and prediction[J]. IEEE Transactions on Wireless Communications, 2023, 22(12): 9412-9423.
[8] TRAN Q T, HAO L, TRINH Q K. A comprehensive research on exponential smoothing methods in modeling and forecasting cellular traffic[J]. Concurrency and Computation: Practice and Experience, 2020, 32(23): e5602.
[9] XU F L, LIN Y Y, HUANG J X, et al. Big data driven mobile traffic understanding and forecasting: a time series approach[J]. IEEE Transactions on Services Computing, 2016, 9(5): 796-805.
[10] XIA H W, WEI X, GAO Y, et al. Traffic prediction based on ensemble machine learning strategies with bagging and LightGBM[C]//Proceedings of the 2019 IEEE International Conference on Communications Workshops. Piscataway: IEEE, 2019: 1-6.
[11] 田中大, 潘信澎. 小波消噪和优化支持向量机的网络流量预测[J]. 北京邮电大学学报, 2022, 45(5): 79-84.
TIAN Z D, PAN X P. Network traffic prediction using wavelet denoising and optimized support vector machine[J]. Journal of Beijing University of Posts and Telecommunications, 2022, 45(5): 79-84.
[12] WANG J, TANG J, XU Z Y, et al. Spatiotemporal modeling and prediction in cellular networks: a big data enabled deep learning approach[C]//Proceedings of the IEEE Conference on Computer Communications. Piscataway: IEEE, 2017: 1-9.
[13] TRAN D, BOURDEV L, FERGUS R, et al. Learning spatiotemporal features with 3D convolutional networks[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision. Piscataway: IEEE, 2015: 4489-4497.
[14] HUANG C W, CHIANG C T, LI Q H. A study of deep learning networks on mobile traffic forecasting[C]//Proceedings of the 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications. Piscataway: IEEE, 2017: 1-6.
[15] ZHANG C T, ZHANG H X, YUAN D F, et al. Citywide cellular traffic prediction based on densely connected convolutional neural networks[J]. IEEE Communications Letters, 2018, 22(8): 1656-1659.
[16] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 2261-2269.
[17] ZHANG C Y, PATRAS P. Long-term mobile traffic forecasting using deep spatio-temporal neural networks[C]//Proceedings of the Eighteenth ACM International Symposium on Mobile Ad Hoc Networking and Computing. New York: ACM, 2018: 231-240.
[18] ZHANG C T, ZHANG H X, QIAO J P, et al. Deep transfer learning for intelligent cellular traffic prediction based on cross-domain big data[J]. IEEE Journal on Selected Areas in Communications, 2019, 37(6): 1389-1401.
[19] LIU Q Y, LI J W, LU Z M. ST-tran: spatial-temporal transformer for cellular traffic prediction[J]. IEEE Communications Letters, 2021, 25(10): 3325-3329.
[20] HU Y H, ZHOU Y J, SONG J P, et al. Citywide mobile traffic forecasting using spatial-temporal downsampling transformer neural networks[J]. IEEE Transactions on Network and Service Management, 2023, 20(1): 152-165.
[21] YAO Y, GU B, SU Z, et al. MVSTGN: a multi-view spatial-temporal graph network for cellular traffic prediction[J]. IEEE Transactions on Mobile Computing, 2023, 22(5): 2837-2849.
[22] RAO Z H, XU Y Y, PAN S M, et al. Cellular traffic prediction: a deep learning method considering dynamic nonlocal spatial correlation, self-attention, and correlation of spatiotemporal feature fusion[J]. IEEE Transactions on Network and Service Management, 2023, 20(1): 426-440.
[23] SHI X J, CHEN Z R, WANG H, et al. Convolutional LSTM network: a machine learning approach for precipitation nowcasting[C]//Proceedings of the Neural Information Processing Systems, 2015.
[24] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems, 2017.
[25] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141.
[26] BARLACCHI G, DE NADAI M, LARCHER R, et al. A multi-source dataset of urban life in the city of Milan and the Province of Trentino[J]. Scientific Data, 2015, 2: 150055.
[27] WANG Y B, WU H X, ZHANG J J, et al. PredRNN: a recurrent neural network for spatiotemporal predictive learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(2): 2208-2225. |