[1] REZAEI S, LIU X. Deep learning for encrypted traffic classification: an overview[J]. IEEE Communications Magazine, 2019, 57(5): 76-81.
[2] VELAN P, ?ERMáK M, ?ELEDA P, et al. A survey of methods for encrypted traffic classification and analysis[J]. International Journal of Network Management, 2015, 25(5): 355-374.
[3] 陈子涵, 程光, 徐子恒, 等. 互联网加密流量检测、分类与识别研究综述[J]. 计算机学报, 2023, 46(5): 1060-1085.
CHEN Z H, CHENG G, XU Z H, et al. A survey on Internet encrypted traffic detection, classification and identification[J]. Chinese Journal of Computers, 2023, 46(5): 1060-1085.
[4] YANG B W, LIU D. Research on network traffic identification based on machine learning and deep packet inspection[C]//Proceedings of the 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference. Piscataway: IEEE, 2019: 1887-1891.
[5] ACETO G, CIUONZO D, MONTIERI A, et al. MIMETIC: mobile encrypted traffic classification using multimodal deep learning[J]. Computer Networks, 2019, 165: 106944.
[6] ACETO G, CIUONZO D, MONTIERI A, et al. Toward effective mobile encrypted traffic classification through deep learning[J]. Neurocomputing, 2020, 409: 306-315.
[7] BELIARD C, FINAMORE A, ROSSI D. Opening the deep pandora box: explainable traffic classification[C]//Proceedings of the IEEE Conference on Computer Communications Workshops. Piscataway: IEEE, 2020: 1292-1293.
[8] LIU C, HE L T, XIONG G, et al. FS-net: a flow sequence network for encrypted traffic classification[C]//Proceedings of the IEEE Conference on Computer Communications. Piscataway: IEEE, 2019: 1171-1179.
[9] LOTFOLLAHI M, JAFARI SIAVOSHANI M, SHIRALI HOSSEIN ZADE R, et al. Deep packet: a novel approach for encrypted traffic classification using deep learning[J]. Soft Computing, 2020, 24(3): 1999-2012.
[10] NASCITA A, MONTIERI A, ACETO G, et al. XAI meets mobile traffic classification: understanding and improving multimodal deep learning architectures[J]. IEEE Transactions on Network and Service Management, 2021, 18(4): 4225-4246.
[11] REZAEI S, KROENCKE B, LIU X. Large-scale mobile app identification using deep learning[J]. IEEE Access, 2019, 8: 348-362.
[12] WANG X, CHEN S H, SU J S. Automatic mobile app identification from encrypted traffic with hybrid neural networks[J]. IEEE Access, 2020, 8: 182065-182077.
[13] ACETO G, CIUONZO D, MONTIERI A, et al. Mobile encrypted traffic classification using deep learning: experimental evaluation, lessons learned, and challenges[J]. IEEE Transactions on Network and Service Management, 2019, 16(2): 445-458.
[14] YANG L X, FINAMORE A, JUN F, et al. Deep learning and zero-day traffic classification: lessons learned from a commercial-grade dataset[J]. IEEE Transactions on Network and Service Management, 2021, 18(4): 4103-4118.
[15] LIU X Y, PENG H W, ZHENG N X, et al. EfficientViT: memory efficient vision transformer with cascaded group attention[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 14420-14430.
[16] HAN D, YE T, HAN Y, et al. Agent attention: on the integration of softmax and linear attention[J]. arXiv:2312.08874, 2023.
[17] FAUVEL K, CHEN F X, ROSSI D. A lightweight, efficient and explainable-by-design convolutional neural network for Internet traffic classification[C]//Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2023: 4013-4023.
[18] 侯剑, 鲁辉, 刘方爱, 等. 加密恶意流量检测及对抗综述[J]. 软件学报, 2024, 35(1): 333-355.
HOU J, LU H, LIU F A, et al. Detection and countermeasure of encrypted malicious traffic: a survey[J]. Journal of Software, 2024, 35(1): 333-355.
[19] VAN EDE T, BORTOLAMEOTTI R, CONTINELLA A, et al. FlowPrint: semi-supervised mobile-app fingerprinting on encrypted network traffic[C]//Proceedings 2020 Network and Distributed System Security Symposium, 2020.
[20] ESTE A, GRINGOLI F, SALGARELLI L. Support vector machines for TCP traffic classification[J]. Computer Networks, 2009, 53(14): 2476-2490.
[21] SUN G L, CHEN T, SU Y Y, et al. Internet traffic classification based on incremental support vector machines[J]. Mobile Networks and Applications, 2018, 23(4): 789-796.
[22] ALSHAMMARI R, ZINCIR-HEYWOOD A N. Can encrypted traffic be identified without port numbers, IP addresses and payload inspection?[J]. Computer Networks, 2011, 55(6): 1326-1350.
[23] DIAS K L, ALMEIDA PONGELUPE M, CAMINHAS W M, et al. An innovative approach for real-time network traffic classification[J]. Computer Networks, 2019, 158: 143-157.
[24] WANG W, ZHU M, ZENG X W, et al. Malware traffic classification using convolutional neural network for representation learning[C]//Proceedings of the 2017 International Conference on Information Networking. Piscataway: IEEE, 2017: 712-717.
[25] REN X M, GU H X, WEI W T. Tree-RNN: tree structural recurrent neural network for network traffic classification[J]. Expert Systems with Applications, 2021, 167: 114363.
[26] LAN J H, LIU X D, LI B, et al. DarknetSec: a novel self-attentive deep learning method for darknet traffic classification and application identification[J]. Computers & Security, 2022, 116: 102663.
[27] 冯景瑜, 王锦康, 张宝军, 等. 基于信任过滤的轻量级加密流量异常检测方案[J]. 西安邮电大学学报, 2023, 28(5): 56-66.
FENG J Y, WANG J K, ZHANG B J, et al. Anomaly detection scheme of lightweight encrypted traffic based on trust filtering[J]. Journal of Xi’an University of Posts and Telecommunications, 2023, 28(5): 56-66.
[28] 杨忠富, 常俊, 许妍, 等. 联合胶囊和双向LSTM网络的VPN加密流量识别[J]. 计算机工程与应用, 2023, 59(23): 246-253.
YANG Z F, CHANG J, XU Y, et al. VPN encrypted traffic identification for joint capsule and bidirectional LSTM networks[J]. Computer Engineering and Applications, 2023, 59(23): 246-253.
[29] 赵阳阳. 物联网加密流量多层次识别方法研究[D]. 北京: 北京交通大学, 2023.
ZHAO Y Y. Research on multi-level identification method of encrypted traffic in Internet of Things[D]. Beijing: Beijing Jiaotong University, 2023.
[30] 牟乔旭. 基于混合压缩和生成对抗网络的加密流量分类研究[D]. 长春: 吉林大学, 2023.
MOU Q X. Research on encrypted traffic based on hybrid compression and generative adversarial networks[D]. Changchun: Jilin University, 2023.
[31] 赵广龙. 基于深度学习的轻量化网络流量分类方法研究[D]. 哈尔滨: 黑龙江大学, 2023.
ZHAO G L. Research on lightweight network traffic classification method based on deep learning[D]. Harbin: Heilongjiang University, 2023.
[32] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems, 2017.
[33] MA N N, ZHANG X Y, ZHENG H T, et al. ShuffleNet V2: practical guidelines for efficient CNN architecture design[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer, 2018: 122-138.
[34] HAN K, WANG Y H, TIAN Q, et al. GhostNet: more features from cheap operations[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 1577-1586.
[35] WANG C, FINAMORE A, YANG L X, et al. AppClassNet: a commercial-grade dataset for application identification research[J]. ACM SIGCOMM Computer Communication Review, 2022, 52(3): 19-27.
[36] ACETO G, CIUONZO D, MONTIERI A, et al. MIRAGE: mobile-app traffic capture and ground-truth creation[C]//Proceedings of the 2019 4th International Conference on Computing, Communications and Security. Piscataway: IEEE, 2019: 1-8.
[37] LUXEMBURK J, ?EJKA T. Fine-grained TLS services classification with reject option[J]. Computer Networks, 2023, 220: 109467.
[38] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
[39] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778.
[40] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 2261-2269.
[41] WOO S, DEBNATH S, HU R H, et al. ConvNeXtV2: co-designing and scaling ConvNets with masked autoencoders[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 16133-16142.
[42] TAN M X, LE Q V. EfficientNetV2: smaller models and faster training[C]//Proceedings of the International Conference on Machine Learning, 2021.
[43] HOWARD A, SANDLER M, CHEN B, et al. Searching for MobileNetV3[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 1314-1324.
[44] WANG A, CHEN H, LIN Z J, et al. Rep ViT: revisiting mobile CNN from ViT perspective[C]//Proceedings of the 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2024: 15909-15920. |