[1] ZHENG C, WU W, CHEN C, et al. Deep learning-based human pose estimation: a survey[J]. ACM Computing Surveys, 2023, 56(1): 1-37.
[2] CHEN Y L, WANG Z C, PENG Y X, et al. Cascaded pyramid network for multi-person pose estimation[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7103-7112.
[3] XIAO B, WU H P, WEI Y C. Simple baselines for human pose estimation and tracking[C]//Proceedings of the 15th European Conference on Computer Vision. Cham: Springer International Publishing, 2018: 472-487.
[4] SUN K, XIAO B, LIU D, et al. Deep high-resolution representation learning for human pose estimation[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 5686-5696.
[5] YANG S, QUAN Z B, NIE M, et al. TransPose: keypoint localization via transformer[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 11782-11792.
[6] XU Y, ZHANG J, ZHANG Q, et al. ViTPose: simple vision transformer baselines for human pose estimation[J]. arXiv: 2204.12484, 2022.
[7] WANG J, SUN K, CHENG T, et al. Deep high-resolution representation learning for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 43(10): 3349-3364.
[8] NEFF C, SHETH A, FURGURSON S, et al. EfficientHRNet[J]. Journal of Real-Time Image Processing, 2021, 18(4): 1037-1049.
[9] TAN M, LE Q. EfficientNet: rethinking model scaling for convolutional neural networks[C]//Proceedings of the International Conference on Machine Learning, 2019: 6105-6114.
[10] YU C Q, XIAO B, GAO C X, et al. Lite-HRNet: a lightweight high-resolution network[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 10435-10445.
[11] MA N N, ZHANG X Y, ZHENG H T, et al. ShuffleNet V2: practical guidelines for efficient CNN architecture design[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer International Publishing, 2018: 122-138.
[12] LI Q, ZHANG Z, XIAO F, et al. Dite-HRNet: dynamic lightweight high-resolution network for human pose estimation[J]. arXiv:2204.10762, 2022.
[13] WANG Y H, LI M Y, CAI H, et al. Lite pose: efficient architecture design for 2D human pose estimation[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 13116-13126.
[14] DAI Y M, GIESEKE F, OEHMCKE S, et al. Attentional feature fusion[C]//Proceedings of the 2021 IEEE Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2021: 3559-3568.
[15] HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13713-13722.
[16] TANG Y, HAN K, GUO J, et al. GhostNetv2: enhance cheap operation with long-range attention[C]//Advances in Neural Information Processing Systems, 2022: 9969-9982.
[17] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer, 2014: 740-755.
[18] ANDRILUKA M, PISHCHULIN L, GEHLER P, et al. 2D human pose estimation: new benchmark and state of the art analysis[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 3686-3693.
[19] WANG Q L, WU B G, ZHU P F, et al. ECA-net: efficient channel attention for deep convolutional neural networks[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 11531-11539.
[20] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer International Publishing, 2018: 3-19.
[21] LI C, ZHOU A, YAO A. Omni-dimensional dynamic convolution[J]. arXiv:2209.07947, 2022.
[22] PAN X, LUO P, SHI J, et al. Two at once: enhancing-learning and generalization capacities via IBN-Net[C]//Proceedings of the European Conference on Computer Vision, 2018: 464-479.
[23] 林远强, 郜辉, 王鹏, 等. 引入级联通道注意力的轻量化人体姿态估计[J]. 计算机工程与应用, 2024, 60(13): 219-227.
LIN Y Q, GAO H, WANG P, et al. Lightweight human pose estimation with cascaded channel attention[J]. Computer Engineering and Applications, 2024, 60(13): 219-227.
[24] ZHANG F, ZHU X, DAI H, et al. Distribution-aware coordinate representation for human pose estimation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 7093-7102.
[25] SUN X F, ADAMU M J, ZHANG R F, et al. Pixel-coordinate-induced human pose high-precision estimation method[J]. Electronics, 2023, 12(7): 1648.
[26] YUAN Y, FU R, HUANG L, et al. HRFormer: high-resolution Transformer for dense prediction[J]. arXiv:2110.09408, 2021.
[27] HUANG J J, ZHU Z, GUO F, et al. The devil is in the details: delving into unbiased data processing for human pose estimation[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 5699-5708.
[28] LI Y J, ZHANG S K, WANG Z C, et al. Tokenpose: learning keypoint tokens for human pose estimation[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 11293-11302.
[29] ZHANG T, LIAN J X, WEN J T, et al. Multi-person pose estimation in the wild: using adversarial method to train a top-down pose estimation network[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2023, 53(7): 3919-3929.
[30] WANG X Y, TONG J W, WANG R. Attention refined network for human pose estimation[J]. Neural Processing Letters, 2021, 53(4): 2853-2872.
[31] SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 4510-4520.
[32] YU W H, LUO M, ZHOU P, et al. MetaFormer is actually what you need for vision[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 10809-10819.
[33] CHEN Y P, DAI X Y, LIU M C, et al. Dynamic convolution: attention over convolution kernels[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 11027-11036.
[34] CHEN Y, DAI X, LIU M, et al. Dynamic ReLU[C]//Proceedings of the European Conference on Computer Vision. Cham: Springer International Publishing, 2020: 351-367. |