Computer Engineering and Applications ›› 2024, Vol. 60 ›› Issue (23): 79-90.DOI: 10.3778/j.issn.1002-8331.2405-0340
• Research Hotspots and Reviews • Previous Articles Next Articles
LIU Zhengmei, WEI Xuemei, ZHANG Junpeng, QIN Boyuan, JIANG Yu, ZHANG Qi, YANG Haolin, GAO Jian
Online:
2024-12-01
Published:
2024-11-29
刘正美,魏雪梅,张俊鹏,覃泊渊,蒋玉,张琦,杨皓琳,高健
LIU Zhengmei, WEI Xuemei, ZHANG Junpeng, QIN Boyuan, JIANG Yu, ZHANG Qi, YANG Haolin, GAO Jian. Research Progress in Predicting Binding Affinity between Drug Molecules and Target Proteins[J]. Computer Engineering and Applications, 2024, 60(23): 79-90.
刘正美, 魏雪梅, 张俊鹏, 覃泊渊, 蒋玉, 张琦, 杨皓琳, 高健. 药物分子与靶标蛋白结合亲和力预测研究进展[J]. 计算机工程与应用, 2024, 60(23): 79-90.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2405-0340
[1] JONES D S, SILVERMAN A P, COCHRAN J R. Developing therapeutic proteins by engineering ligand-receptor interactions[J]. Trends in Biotechnology, 2008, 26(9): 498-505. [2] ARMINGOL E, OFFICER A, HARISMENDY O, et al. Deciphering cell-cell interactions and communication from gene expression[J]. Nature Reviews Genetics, 2020, 22(2): 71-88. [3] HUGHES J P, REES S, KALINDJIAN S B, et al. Principles of early drug discovery[J]. British Journal of Pharmacology, 2011, 162(6): 1239-1249. [4] CLARK L J, BU G, NANNENGA B L, et al. MicroED for the study of protein-ligand interactions and the potential for drug discovery[J].Nature Reviews Chemistry, 2021, 5(12): 853-858. [5] BAGHERIAN M, SABETI E, WANG K, et al. Machine learning approaches and databases for prediction of drug-target interaction:a survey paper[J].Briefings in Bioinformatics, 2021, 22(1): 247-269. [6] THAFAR M A, OLAYAN R S, ASHOOR H, et al. DTiGEMS+:drug-target interaction prediction using graph embedding, graph mining, and similarity-based techniques[J]. Journal of Cheminformatics, 2020, 12(1): 1-17. [7] STOKES J M, YANG K, SWANSON K, et al. A deep learning approach to antibiotic discovery[J]. Cell, 2020, 180(4): 688-702. [8] PANTSAR T, POSO A. Binding affinity via docking: fact and fiction[J]. Molecules, 2018, 23(8): 1899. [9] CER R Z, MUDUNURI U, STEPHENS R, et al. IC50-to-Ki: a web-based tool for converting IC50 to Ki values for inhibitors of enzyme activity and ligand binding[J]. Nucleic Acids Research, 2009, 37: 441-445. [10] GROMIHA M M, YUGANDHAR K, JEMIMAH S. Protein-protein interactions: scoring schemes and binding affinity[J]. Current Opinion in Structural Biology, 2017, 44: 31-38. [11] GAPSYS V, PéREZ-BENITO L, ALDEGHI M, et al. Large scale relative protein ligand binding affinities using non-equilibrium alchemy[J]. Chemical Science, 2020, 11(4): 1140-1152. [12] SVERGUN D I, PETOUKHOV M V, KOCH M H J. Determination of domain structure of proteins from X-ray solution scattering[J]. Biophysical Journal, 2001, 80(6): 2946-2953. [13] PE?A A, SWEENEY A, COOK A D, et al. Structure of microtubule-trapped human kinesin-5 and its mechanism of inhibition revealed using cryoelectron microscopy[J]. Structure, 2020, 28(4): 450-457. [14] MARKOWETZ F. All biology is computational biology[J]. PLoS Biology, 2017, 15(3): 2002050. [15] SEYFINEJAD B, OZKAN S A, JOUYBAN A. Recent advances in the determination of unbound concentration and plasma protein binding of drugs: analytical methods[J]. Talanta, 2021, 225: 122052. [16] SRIVASTAVA N, MISHRA B N, SRIVASTAVA P. In-silico identification of drug lead molecule against pesticide exposed-neurodevelopmental disorders through network-based computational model approach[J]. Current Bioinformatics, 2019, 14(5): 460-467. [17] HINGORANI A D, KUAN V, FINAN C, et al. Improving the odds of drug development success through human genomics: modelling study[J]. Scientific Reports, 2019, 9(1): 18911. [18] CALDWELL G W, YAN Z Y.Isothermal titration calorimetry characterization of drug-binding energetics to blood proteins[J]. Optimization in Drug Discovery: in Vitro Methods, 2004: 123-149. [19] ERIKSSON M A L, GABRIELSSON J, NILSSON L B. Studies of drug binding to plasma proteins using a variant of equilibrium dialysis[J]. Journal of Pharmaceutical and Biomedical Analysis, 2005, 38(3): 381-389. [20] FABINI E, DANIELSON U H. Monitoring drug-serum protein interactions for early ADME prediction through surface plasmon resonance technology[J]. Journal of Pharmaceutical and Biomedical Analysis, 2017, 144: 188-194. [21] SHARMEEN S, KYEI I, HATCH A, et al. Analysis of drug interactions with serum proteins and related binding agents by affinity capillary electrophoresis: a review[J]. Electrophoresis, 2022, 43(23/24): 2302-2323. [22] DUNCAN T M, SHAH N B. Bio-layer interferometry for measuring kinetics of protein-protein interactions and allosteric ligand effects[J]. Journal of Visualized Experiments, 2014, 84: 51383. [23] COBANOGLU M C, LIU C, HU F, et al. Predicting drug-target interactions using probabilistic matrix factorization[J]. Journal of Chemical Information and Modeling, 2013, 53(12): 3399-3409. [24] YAMANISHI Y, ARAKI M, GUTTERIDGE A, et al. Prediction of drug-target interaction networks from the integration of chemical and genomic spaces[J]. Bioinformatics, 2008, 24(13): 232-240. [25] SLUSKY J, LIU X, FENG H, et al. Dowker complex based machine learning (DCML) models for protein-ligand binding affinity prediction[J]. PLoS Computational Biology, 2022, 18(4): 1009943. [26] SAVOJARDO C, BRUCIAFERRI N, TARTARI G, et al. DeepMito: accurate prediction of protein sub-mitochondrial localization using convolutional neural networks[J]. Bioinformatics, 2020, 36(1): 56-64. [27] TANG J, SZWAJDA A, SHAKYAWAR S, et al. Making sense of large-scale kinase inhibitor bioactivity data sets: a comparative and integrative analysis[J]. Journal of Chemical Information and Modeling, 2014, 54(3): 735-743. [28] DAVIS M I, HUNT J P, HERRGARD S, et al. Comprehensive analysis of kinase inhibitor selectivity[J]. Nature Biotechnology, 2011, 29(11): 1046-1051. [29] LIU Z, SU M, HAN L, et al. Forging the basis for developing protein-ligand interaction scoring functions[J]. Accounts of Chemical Research, 2017, 50(2): 302-309. [30] XU L, RU X, SONG R. Application of machine learning for drug-target interaction prediction[J]. Frontiers in Genetics, 2021, 12: 680117. [31] MAHMUD S M H, CHEN W, MENG H, et al. Prediction of drug-target interaction based on protein features using undersampling and feature selection techniques with boosting[J]. Analytical Biochemistry, 2020, 589: 113507. [32] LAARHOVEN V T, NABUURS S B, MARCHIORI E. Gaussian interaction profile kernels for predicting drug-target interaction[J]. Bioinformatics, 2011, 27(21): 3036-3043. [33] WANG D D, OU-YANG L, XIE H, et al. Predicting the impacts of mutations on protein-ligand binding affinity based on molecular dynamics simulations and machine learning methods[J]. Computational and Structural Biotechnology Journal, 2020, 18: 439-454. [34] WANG L, DENG Y, WU Y, et al. Accurate modeling of scaffold hopping transformations in drug discovery[J]. Journal of Chemical Theory and Computation, 2016, 13(1): 42-54. [35] WANG D D, ZHU M, YAN H. Computationally predicting binding affinity in protein-ligand complexes: free energy-based simulations and machine learning-based scoring functions[J]. Briefings in Bioinformatics, 2021, 22(3): 107. [36] BEIERLEIN F R, MICHEL J, ESSEX J W. A simple QM/MM approach for capturing polarization effects in protein-ligand binding free energy calculations[J]. The Journal of Physical Chemistry B, 2011, 115(17): 4911-4926. [37] HUANG K, LUO S, CONG Y, et al. An accurate free energy estimator: based on MM/PBSA combined with interaction entropy for protein-ligand binding affinity[J]. Nanoscale, 2020, 12(19): 10737-10750. [38] PERRYMAN A L, LIN J H, MCCAMMON J A. HIV-1 protease molecular dynamics of a wild‐type and of the V82F/I84V mutant: possible contributions to drug resistance and a potential new target site for drugs[J]. Protein Science, 2004, 13(4): 1108-1123. [39] SHAN Y, KIM E T, EASTWOOD M P, et al. How does a drug molecule find its target binding site?[J]. Journal of the American Chemical Society, 2011, 133(24): 9181-9183. [40] GUTERRES H, IM W. Improving protein-ligand docking results with high-throughput molecular dynamics simulations[J]. Journal of Chemical Information and Modeling, 2020, 60(4): 2189-2198. [41] SONG S, CHEN X, ZHANG Y, et al. Protein-ligand docking using differential evolution with an adaptive mechanism[J]. Knowledge-Based Systems, 2021, 231: 107433. [42] HUANG N, KALYANARAMAN C, BERNACKI K, et al. Molecular mechanics methods for predicting protein-ligand binding[J]. Physical Chemistry Chemical Physics, 2006, 8(44): 5166- 5177. [43] HUANG S Y, ZOU X Q. An iterative knowledge-based scoring function to predict protein-ligand interactions: I. derivation of interaction potentials[J].Journal of Computational Chemistry, 2006, 27(15): 1866-1875. [44] FRIESNER R A, BANKS J L, MURPHY R B, et al. Glide: a new approach for rapid, accurate docking and scoring. 1. method and assessment of docking accuracy[J]. Journal of Medicinal Chemistry, 2004, 47(7): 1739-1749. [45] TAO P, LAI L H. Protein ligand docking based on empirical method for binding affinity estimation[J]. Journal of Computer-Aided Molecular Design, 2001, 15: 429-446. [46] WU Q, PENG Z, ZHANG Y, et al. COACH-D: improved protein-ligand binding sites prediction with refined ligand-binding poses through molecular docking[J]. Nucleic Acids Research, 2018, 46(1): 438-442. [47] VENKATACHALAM C M. LigandFit: a novel method for the shape-directed rapid docking of ligands to protein active sites[J]. Journal of Molecular Graphics and Modelling, 2003, 21: 289-307. [48] ZHAO H, CAFLISCH A. Discovery of ZAP70 inhibitors by high-throughput docking into a conformation of its kinase domain generated by molecular dynamics[J]. Bioorganic & Medicinal Chemistry Letters, 2013, 23(20): 5721-5726. [49] LI J, FU A, ZHANG L. An overview of scoring functions used for protein-ligand interactions in molecular docking[J]. Interdisciplinary Sciences: Computational Life Sciences, 2019, 11(2): 320-328. [50] TROTT O, OLSON A J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading[J]. Journal of Computational Chemistry, 2009, 31(2): 455-461. [51] JAIN A N. Surflex: fully automatic flexible molecular docking using a molecular similarity-based search engine[J]. Journal of Medicinal Chemistry, 2003, 46(4): 499-511. [52] BALLESTER P J, MITCHELL J B O. A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking[J]. Bioinformatics, 2010, 26(9): 1169-1175. [53] YUAN Q, GAO J, WU D, et al. DrugE-Rank: improving drug-target interaction prediction of new candidate drugs or targets by ensemble learning to rank[J]. Bioinformatics, 2016, 32(12): 18-27. [54] SHAR P A, TAO W, GAO S, et al.Pred-binding: large-scale protein-ligand binding affinity prediction[J]. Journal of Enzyme Inhibition and Medicinal Chemistry, 2016, 31(6): 1443-1450. [55] WANG Y, GUO Y, KUANG Q, et al. A comparative study of family-specific protein-ligand complex affinity prediction based on random forest approach[J]. Journal of Computer-aided Molecular Design, 2015, 29: 349-360. [56] KUNDU I, PAUL G, BANERJEE R. A machine learning approach towards the prediction of protein-ligand binding affinity based on fundamental molecular properties[J].RSC Advances, 2018, 8(22): 12127-12137. [57] CHAUHAN N K, SINGH K. A review on conventional machine learning vs deep learning[C]//Proceedings of the 2018 International Conference on Computing, Power and Communication Technologies, 2018: 347-352. [58] COLWELL L J.Statistical and machine learning approaches to predicting protein-ligand interactions[J]. Current Opinion in Structural Biology, 2018, 49: 123-128. [59] PRZYTYCKA T M, LIU Y, WU M, et al. Neighborhood regularized logistic matrix factorization for drug-target interaction prediction[J]. PLoS Computational Biology, 2016, 12(2):1004760. [60] OLAYAN R S, ASHOOR H, BAJIC V B. DDR: efficient computational method to predict drug-target interactions using graph mining and machine learning approaches[J]. Bioinformatics, 2018, 34(7): 1164-1173. [61] ZANNI R, GALVEZ-LLOMPART M, GALVEZ J, et al. QSAR multi-target in drug discovery: a review[J]. Current Computer-Aided Drug Design, 2014, 10(2): 129-136. [62] DING H, TAKIGAWA I, MAMITSUKA H, et al. Similarity-based machine learning methods for predicting drug-target interactions: a brief review[J]. Briefings in Bioinformatics, 2014, 15(5): 734-747. [63] HE T, HEIDEMEYER M, BAN F, et al. SimBoost: a read-across approach for predicting drug-target binding affinities using gradient boosting machines[J]. Journal of Cheminformatics, 2017, 9(1): 1-14. [64] PAHIKKALA T, AIROLA A, PIETILA S, et al. Toward more realistic drug-target interaction predictions[J]. Briefings in Bioinformatics, 2014, 16(2): 325-337. [65] ELTON D C, BOUKOUVALAS Z, FUGE M D, et al. Deep learning for molecular design-a review of the state of the art[J]. Molecular Systems Design & Engineering, 2019, 4(4): 828-849. [66] ASHTAWY H M, MAHAPATRA N R. BgN-Score and BsN-Score: bagging and boosting based ensemble neural networks scoring functions for accurate binding affinity prediction of protein-ligand complexes[J]. BMC Bioinformatics, 2015, 16: 1-12. [67] JIMéNEZ J, ?KALI? M, MARTíNEZ-ROSELL G, et al. KDEEP: protein-ligand absolute binding affinity prediction via 3D-convolutional neural networks[J]. Journal of Chemical Information and Modeling, 2018, 58(2): 287-296. [68] STEPNIEWSKA-DZIUBINSKA M M, ZIELENKIEWICZ P, SIEDLECKI P, et al. Development and evaluation of a deep learning model for protein-ligand binding affinity prediction[J]. Bioinformatics, 2018, 34(21): 3666-3674. [69] WANG K, ZHOU R, LI Y, et al. DeepDTAF: a deep learning method to predict protein-ligand binding affinity[J]. Briefings in Bioinformatics, 2021, 22(5): 72. [70] GU Y, ZHANG X, XU A, et al. Protein-ligand binding affinity prediction with edge awareness and supervised attention[J]. iScience, 2023, 26(1): 105892. [71] JIN Z, WU T, CHEN T, et al. CAPLA: improved prediction of protein-ligand binding affinity by a deep learning approach based on a cross-attention mechanism[J]. Bioinformatics, 2023, 39(2): 49. [72] NGUYEN T, LE H, QUINN T P, et al. GraphDTA: predicting drug-target binding affinity with graph neural networks[J]. Bioinformatics, 2021, 37(8): 1140-1147. [73] NGUYEN T M, NGUYEN T, LE T M, et al. GEFA: early fusion approach in drug-target affinity prediction[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2022, 19(2): 718-728. [74] LI Q, ZHANG X, WU L, et al.PLA-MoRe: a protein-ligand binding affinity prediction model via comprehensive molecular representations[J]. Journal of Chemical Information and Modeling, 2022, 62(18): 4380-4390. [75] LI M, LU Z, WU Y, et al. BACPI: a bi-directional attention Neural Network for compound-protein interaction and binding affinity prediction[J]. Bioinformatics, 2022, 38(7): 1995-2002. [76] LI S, WAN F, SHU H, et al. MONN: a multi-objective neural network for predicting compound-protein interactions and affinities[J]. Cell Systems, 2020, 10(4): 308-322. [77] YUAN W, CHEN G, CHEN C Y C. FusionDTA: attention-based feature polymerizer and knowledge distillation for drug-target binding affinity prediction[J]. Briefings in Bioinformatics, 2022, 23(1):506. [78] ?ZTüRK H, ?ZGüR A, OZKIRIMLI E. DeepDTA: deep drug-target binding affinity prediction[J]. Bioinformatics, 2018, 34(17): 821-829. [79] WANG J, WEN N, WANG C, et al. ELECTRA-DTA: a new compound-protein binding affinity prediction model based on the contextualized sequence encoding[J]. Journal of Cheminformatics, 2022, 14(1): 1-14. [80] SHIM J, HONG Z Y, SOHN I, et al. Prediction of drug-target binding affinity using similarity-based convolutional neural network[J]. Scientific Reports, 2021, 11(1): 4416. [81] ZENG Y, CHEN X, LUO Y, et al. Deep drug-target binding affinity prediction with multiple attention blocks[J]. Briefings in Bioinformatics, 2021, 22(5): 117. [82] GHIMIRE A, TAYARA H, XUAN Z, et al. CSatDTA: prediction of drug-target binding affinity using convolution model with self-attention[J]. International Journal of Molecular Sciences, 2022, 23(15): 8453. [83] KARIMI M, WU D, WANG Z, et al. DeepAffinity: interpretable deep learning of compound-protein affinity through unified recurrent and convolutional neural networks[J]. Bioinformatics, 2019, 35(18): 3329-3338. [84] JONES D, KIM H, ZHANG X, et al. Improved protein-ligand binding affinity prediction with structure-based deep fusion inference[J]. Journal of Chemical Information and Modeling, 2021, 61(4): 1583-1592. [85] SIMONOVSKY M, MEYERS J. DeeplyTough: learning structural comparison of protein binding sites[J]. Journal of Chemical Information and Modeling, 2020, 60(4): 2356-2366. [86] TORNG W, ALTMAN R B. Graph convolutional neural networks for predicting drug-target interactions[J]. Journal of Chemical Information and Modeling, 2019, 59(10): 4131-4149. [87] AHMED A, MAM B, SOWDHAMINI R. DEELIG: a deep learning approach to predict protein-ligand binding affinity[J]. Bioinformatics and Biology Insights, 2021, 15: 1-9. [88] LIM J, RYU S, PARK K, et al. Predicting drug-target interaction using a novel graph neural network with 3D structure-embedded graph representation[J]. Journal of Chemical Information and Modeling, 2019, 59(9): 3981-3988. [89] LIM S, LU Y, CHO C Y, et al.A review on compound-protein interaction prediction methods: data, format, representation and model[J]. Computational and Structural Biotechnology Journal, 2021, 19: 1541-1556. [90] TSUBAKI M, TOMII K, SESE J J B. Compound-protein interaction prediction with end-to-end learning of Neural Networks for graphs and sequences[J]. Bioinformatics, 2019, 35(2): 309-318. [91] SHEN H, ZHANG Y, ZHENG C, et al. A cascade graph convolutional network for predicting protein-ligand binding affinity[J]. International Journal of Molecular Sciences, 2021, 22(8): 4023. [92] YANG Z, ZHONG W, ZHAO L, et al. MGraphDTA: deep multiscale graph neural network for explainable drugtarget binding affinity prediction[J]. Chemical Science, 2022, 13(3): 816-833. [93] DU J, GUO J, KANG D, et al. New techniques and strategies in drug discovery[J]. Chinese Chemical Letters, 2020, 31(7): 1695-1708. [94] KOH P W, LIANG P. Understanding black-box predictions via influence functions[C]//Proceedings of the International Conference on Machine Learning, 2017: 1885-1894. [95] HE H H, CHEN G X, CHEN C Y C. NHGNN-DTA: a node-adaptive hybrid graph neural network for interpretable drug-target binding affinity prediction[J]. Bioinformatics, 2023, 39(6): 355. |
[1] | CHE Yunlong, YUAN Liang, SUN Lihui. 3D Object Detection Based on Strong Semantic Key Point Sampling [J]. Computer Engineering and Applications, 2024, 60(9): 254-260. |
[2] | QIU Yunfei, WANG Yifan. Multi-Level 3D Point Cloud Completion with Dual-Branch Structure [J]. Computer Engineering and Applications, 2024, 60(9): 272-282. |
[3] | YE Bin, ZHU Xingshuai, YAO Kang, DING Shangshang, FU Weiwei. Binocular Depth Measurement Method for Desktop Interaction Scene [J]. Computer Engineering and Applications, 2024, 60(9): 283-291. |
[4] | WANG Cailing, YAN Jingjing, ZHANG Zhidong. Review on Human Action Recognition Methods Based on Multimodal Data [J]. Computer Engineering and Applications, 2024, 60(9): 1-18. |
[5] | LIAN Lu, TIAN Qichuan, TAN Run, ZHANG Xiaohang. Research Progress of Image Style Transfer Based on Neural Network [J]. Computer Engineering and Applications, 2024, 60(9): 30-47. |
[6] | YANG Chenxi, ZHUANG Xufei, CHEN Junnan, LI Heng. Review of Research on Bus Travel Trajectory Prediction Based on Deep Learning [J]. Computer Engineering and Applications, 2024, 60(9): 65-78. |
[7] | SONG Jianping, WANG Yi, SUN Kaiwei, LIU Qilie. Short Text Classification Combined with Hyperbolic Graph Attention Networks and Labels [J]. Computer Engineering and Applications, 2024, 60(9): 188-195. |
[8] | ZHOU Bojun, CHEN Zhiyu. Survey of Few-Shot Image Classification Based on Deep Meta-Learning [J]. Computer Engineering and Applications, 2024, 60(8): 1-15. |
[9] | SUN Shilei, LI Ming, LIU Jing, MA Jingang, CHEN Tianzhen. Research Progress on Deep Learning in Field of Diabetic Retinopathy Classification [J]. Computer Engineering and Applications, 2024, 60(8): 16-30. |
[10] | WANG Weitai, WANG Xiaoqiang, LI Leixiao, TAO Yihao, LIN Hao. Review of Construction and Applications of Spatio-Temporal Graph Neural Network in Traffic Flow Prediction [J]. Computer Engineering and Applications, 2024, 60(8): 31-45. |
[11] | XIE Weiyu, ZHANG Qiang. Review on Detection of Drones and Birds in Photoelectric Images Based on Deep Learning Convolutional Neural Network [J]. Computer Engineering and Applications, 2024, 60(8): 46-55. |
[12] | ZHOU Dingwei, HU Jing, ZHANG Liangrui, DUAN Feiya. Collaborative Correction Technology of Label Omission in Dataset for Object Detection [J]. Computer Engineering and Applications, 2024, 60(8): 267-273. |
[13] | CHANG Xilong, LIANG Kun, LI Wentao. Review of Development of Deep Learning Optimizer [J]. Computer Engineering and Applications, 2024, 60(7): 1-12. |
[14] | ZHOU Yutong, MA Zhiqiang, XU Biqi, JIA Wenchao, LYU Kai, LIU Jia. Survey of Deep Learning-Based on Emotion Generation in Conversation [J]. Computer Engineering and Applications, 2024, 60(7): 13-25. |
[15] | JIANG Liang, ZHANG Cheng, WEI Dejian, CAO Hui, DU Yuzheng. Deep Learning in Aided Diagnosis of Osteoporosis [J]. Computer Engineering and Applications, 2024, 60(7): 26-40. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||