[1] YOON D, TANG T, BARFOOT T. Mapless online detection of dynamic objects in 3D LiDAR[C]//Proceedings of the Conference on Computer and Robot Vision, 2019: 113-120.
[2] DEWAN A, CASELITZ T, TIPALDI G, et al. Rigid scene flow for 3D LiDAR scans[C]//Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2016: 1765-1770.
[3] KIM G, KIM A. Remove, then revert: static point cloud map construction using multiresolution range images[C]//Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2020: 10758-10765.
[4] 孙祥峻, 刘志刚. 矿井环境基于稀疏激光雷达数据的动态物体检测与追踪[J]. 工业控制计算机, 2020, 33(7): 91-93.
SUN X J, LIU Z G. Dynamic object detection and tracking based on sparse LiDAR data in mining environment[J]. Industrial Control Computer, 2020, 33(7): 91-93.
[5] DENG D, ZAKHOR A. RSF: optimizing rigid scene flow from 3D point clouds without labels[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2023: 1277-1286.
[6] LIN J, ZHANG F. Loam livox: a fast, robust, high-precision LiDAR odometry and mapping package for LiDARs of small FoV[C]//Proceedings of the 2020 IEEE International Conference on Robotics and Automation, 2020: 3126-3131.
[7] ZHOU Y, TUZEL O. VoxelNet: end-to-end learning for point cloud based 3D object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 4490-4499.
[8] LANG H, VORA S, CAESAR H, et al. PointPillars: fast encoders for object detection from point clouds[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 12689-12697.
[9] VAQUERO V, PINO I, MORENO F, et al. Dual-branch CNNs for vehicle detection and tracking on LiDAR data[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 22(11): 6942-6953.
[10] SHI S, GUO C, JIANG L, et al. PV-RCNN: point-voxel feature set abstraction for 3D object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 10526-10535.
[11] MENZE M, HEIPKE C, GEIGER A. Joint 3D estimation of vehicles and scene flow[J].ISPRS Annals of Photogrammetry, Remote Sensing & Spatial Information Sciences, 2015: 427-434.
[12] MENZE M, HEIPKE C, GEIGER A. Object scene flow[J].ISPRS Journal of Photogrammetry and Remote Sensing, 2018,140: 60-76.
[13] GEIGER A, LENZ P, URTASUN R. Are we ready for autonomous driving? the kitti vision benchmark suite[C]//Proceedings of the Conference on Computer Vision and Pattern Recognition, 2012: 3354-3361.
[14] BEHLEY J, GARBADE M, MILIOTO A, et al. SemanticKITTI: a dataset for semantic scene understanding of LiDAR sequences[C]//Proceedings of the IEEE International Conference on Computer Vision, 2019: 9296-9306.
[15] CHEN X, LI S, MERSCH B, et al. Moving object segmentation in 3D LiDAR data: a learning-based approach exploiting sequential data[J].IEEE Robotics and Automation Letters,2021, 6(4): 6529-6536.
[16] SUN J, DAI Y, ZHANG X, et al. Efficient spatial-temporal information fusion for LiDAR-based 3D moving object segmentation[C]//Proceedings of the 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2022: 11456-11463.
[17] YAN J, CHEN D, MYEONG H, et al. Automatic extraction of moving objects from image and LiDAR sequences[C]//Proceedings of the International Conference on 3D Vision, 2014: 673-680.
[18] POSTICA G, ROMANONI A, MATTEUCCI M. Robust moving objects detection in LiDAR data exploiting visual cues[C]//Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2016: 1093-1098.
[19] KITTENPLON Y, ELDAR Y, RAVIV D. FlowStep3D: model unrolling for self-supervised scene flow estimation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 4112-4121.
[20] QI C R, YI L, SU H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: 5099-5108.
[21] XIN L, CHEN Y K, LU F, et al. Spherical transformer for LiDAR-based 3D recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 17545-17555.
[22] 张冬冬, 郭杰, 陈阳. 基于原始点云的三维目标检测算法[J]. 计算机工程与应用, 2023, 59(3): 209-217.
ZHANG D D, GUO J, CHEN Y. 3D object detection algorithm based on raw point clouds[J]. Computer Engineering and Applications, 2023, 59(3): 209-217.
[23] LIU X, QI C R, GUIBAS J. FlowNet3D: learning scene flow in 3D point clouds[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 529-537.
[24] BAUR S, EMMERICHS J, MOOSMANN F, et al. SLIM: self-supervised LiDAR scene flow and motion segmentation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 13106-13116.
[25] DENG Y, YANG J, XU D, et al. Multi-scale clustering by building a robust density map[C]//Proceedings of the European Conference on Computer Vision, 2017: 715-731.
[26] QI C R, KOLTUN V. PointNet: deep learning on point sets for 3D classification and segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 652-660.
[27] POWELL D, ABEL T. An exact general remeshing scheme applied to physically conservative voxelization[J].Journal of Computational Physics, 2015, 297: 340-356.
[28] CORTINHAL T, TZELEPIS G, AKSOY E. SalsaNext: fast, uncertainty-aware semantic segmentation of LiDAR point clouds[C]//Proceedings of the IEEE Vehicles Symposium, 2020: 207-222.
[29] XINGE Z, ZHOU H, WANG T, et al. Cylindrical and asymmetrical 3D convolution networks for LiDAR segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 6807-6822. |