Computer Engineering and Applications ›› 2024, Vol. 60 ›› Issue (19): 18-31.DOI: 10.3778/j.issn.1002-8331.2402-0070
• Research Hotspots and Reviews • Previous Articles Next Articles
BAO Qiangqiang, TANG Siyuan, GU Yu
Online:
2024-10-01
Published:
2024-09-30
包强强,唐思源,谷宇
BAO Qiangqiang, TANG Siyuan, GU Yu. Review of Difficult Problems of Deep Learning to Detect Lung Nodules[J]. Computer Engineering and Applications, 2024, 60(19): 18-31.
包强强, 唐思源, 谷宇. 深度学习检测肺结节难点问题综述[J]. 计算机工程与应用, 2024, 60(19): 18-31.
Add to citation manager EndNote|Ris|BibTeX
URL: http://cea.ceaj.org/EN/10.3778/j.issn.1002-8331.2402-0070
[1] SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: A Cancer Journal for Clinicians, 2021, 71(3): 209-249. [2] JIN N, SLOANE P J. Evaluation of pure ground glass pul- monary nodule: a case report[J]. Journal of Community Hospital Internal Medicine Perspectives, 2014, 4(4): 24562. [3] KARKI A, SHAH R, FEIN A. Multiple pulmonary nodules in malignancy[J]. Current Opinion in Pulmonary Medicine, 2017, 23(4): 285-289. [4] 孙华聪, 彭延军, 郭燕飞, 等. 3D多尺度深度卷积神经网络肺结节检测[J]. 中国图象图形学报, 2021, 26(7): 1716-1725. SUN H C, PENG Y J, GUO Y F, et al. 3D multi scale deep convolutional neural networks in pulmonary nodule detec- tion[J]. Journal of Image and Graphics, 2021, 26(7): 1716-1725. [5] ARMATO III S G, MCLENNAN G, BIDAUT L, et al. The lung image database consortium(LIDC) and image data- base resource initiative (IDRI): a completed reference data-base of lung nodules on CT scans[J]. Medical Physics, 2011, 38(2): 915-931. [6] SETIO A A A, TRAVERSO A, DE BEL T, et al. Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the LUNA16 challenge[J]. Medical Image Analysis, 2017, 42: 1-13. [7] PAN S J, YANG Q A. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 22(10): 1345-1359. [8] 陈道争, 江倩. 基于卷积神经网络和迁移学习的肺结节检测[J]. 计算机工程与设计, 2021, 42(1): 240-247. CHEN D Z, JIANG Q. Pulmonary nodule detection based on convolutional neural networks with transfer learning[J]. Computer Engineering and Design, 2021, 42(1):240-247. [9] TANG S, YANG M, BAI J. Detection of pulmonary nodules based on a multiscale feature 3D U-Net convolutional neural network of transfer learning [J]. PLoS One, 2020, 15(8): e0235672. [10] 张驰名, 王庆凤, 刘志勤, 等. 基于深度迁移学习的肺结节辅助诊断方法[J]. 计算机工程, 2020, 46(1): 271-278. ZHANG C M, WANG Q F, LIU Z Q, et al. Pulmonary nodule auxiliary diagnosis method based on deep transfer learning[J]. Computer Engineering, 2020, 46(1): 271-278. [11] 梁俊杰,韦舰晶,蒋正锋. 生成对抗网络GAN综述[J]. 计算机科学与探索, 2020, 14(1): 1-17. LIANG J J, WEI J J, JIANG Z F. Generative adversarial networks GAN overview[J]. Journal of Frontiers of Com-puter Science and Technology, 2020, 14(1): 1-17. [12] 李阳, 高轼奇. 基于数据增强及注意力机制的肺结节检测系统[J]. 北京邮电大学学报, 2022, 45(4): 25-30. LI Y, GAO S Q. Lung nodule detection system based on data augmentation and attention mechanism[J]. Journal of Beijing University of Posts and Telecommunications, 2022, 45(4): 25-30. [13] SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout: a simple way to prevent neural networksfrom overfitting[J]. The Journal of Machine Learning Research, 2014, 15(1): 1929-1958. [14] GHIASI G, LIN T Y, LE Q V. DropBlock: a regularization method for convolutional networks[C]//Advances in Neural Information Processing Systems, 2018, 31. [15] ONISHI Y, TERAMOTO A, TSUJIMOTO M, et al. Multi-planar analysis for pulmonary nodule classification in CT images using deep convolutional neural network and generative adversarial networks[J]. International Journal of Computer Assisted Radiology and Surgery, 2020, 15(1): 173-178. [16] SUTTER T, DAUNHAWER I, VOGT J. Multimodal gene-rative learning utilizing Jensen-Shannon-divergence[C]//Ad-vances in Neural Information Processing Systems, 2020, 33: 6100-6110. [17] SU Y X, ZHAO S L, CHEN X X, et al. Parallel Wasserstein generative adversarial nets with multiple discriminators[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence, Macao, China, Aug 10-16, 2019. San Francisco: Morgan Kaufmann, 2019: 3483-3489. [18] GAO C F, CLARK S, FURST J, et al. Augmenting LIDC dataset using 3D generative adversarial networks to improve lung nodule detection[C]//Proceedings of the Conference on Medical Imaging Computer Aided Diagnosis, San Diego,?CA, Feb 17-20, 2019. Washington: SPIEW, 2019: 398-407. [19] MESCHEDER L, GEIGER A, NOWOZIN S. Which train-ing methods for GANs do actually converge?[C]//Proceedings of the 35th International Conference on Machine Learning (ICML), Stockholm, Jul 10-15, 2018. New York: PMLR, 2018: 3481-3490. [20] BU T, YANG Z Y, JIANG S, et al. 3D conditional generative adversarial network-based synthetic medical image aug- mentation for lung nodule detection[J]. International Jour-nal of Imaging Systems and Technology,2021, 31(2): 670-681. [21] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Seattle, WA, Jun 27-30, 2016. Piscataway, NJ: IEEE Computer Society, 2016: 770-778. [22] 肖鹏程, 徐文广, 张妍, 等. 基于SE注意力机制的废钢分类评级方法[J]. 工程科学学报, 2023, 45(8): 1342-1352. XIAO P C, XU W G, ZHANG Y, et al. Research on scrap classification and rating method based on SE attention mechanism[J]. Chinese Journal of Engineering, 2023, 45(8): 1342-1352. [23] VAN ENGELEN J E, HOOS H H. A survey on semi-supervised learning[J]. Machine Learning, 2020, 109(2):373-440. [24] TANG S Y, MA R, LI Q Q, et al. Classification of benign and malignant pulmonary nodules based on the multire- solution 3D DPSECN model and semisupervised clustering[J]. IEEE Access, 2021, 9: 43397-43410. [25] PANDEY A C, KULHARI A, SHUKLA D S. Enhancing sentiment analysis using roulette wheel selection based cuckoo search clustering method[J]. Journal of Ambient Intelligence and Humanized Computing, 2022, 13(1): 1-29. [26] NALAIE K, GHIASI-SHIRAZI K, AKBARZADEH-T M R. Efficient implementation of a generalized convolutional neural networks based on weighted euclidean distance[C]//Proceedings of the 7th International Conference on Computer and Knowledge Engineering (ICCKE), Mashhad, Oct 26-27, 2017. Piscataway, NJ: IEEE Computer Society, 2017. [27] SHAK K, AL-SHABI M, LIEW A, et al. A new semi- supervised self-training method for lung cancer prediction[J].?arXiv:2012.09472, 2020. [28] WU Y H, PANG Y X, CAO P, et al. A 3D multi-scale virtual adversarial network for false positive reduction in pulmonary nodule detection[C]//Proceedings of the 3rd International Conference on Innovation in Artificial Intelligence (ICIAI), Suzhou, China, Mar 15-18, 2019. New York: ACM, 2019: 193-197. [29] CHEN L, RUAN W, LIU X, et al. SeqVAT: virtual adversarial training for semi-supervised sequence labeling[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, 2020: 8801-8811. [30] DIKE H U, ZHOU Y, DEVEERASETTY K K, et al. Unsu-pervised learning based on artificial neural network: a review[C]//Proceedings of the IEEE International Conference on Cyborg and Bionic Systems (CBS), Shenzhen, China, Oct 25-27, 2018. Piscataway, NJ: IEEE Computer Society, 2018: 322-327. [31] NIU C, WANG G. Unsupervised contrastive learning based transformer for lung nodule detection[J]. Physics in Medicine & Biology, 2022, 67(20): 204001. [32] REDMON J, FARHADI A. YOLOv3: an incremental improve- ment[J]. arXiv:1804.02767, 2018. [33] 郭晓敏, 黄新. 改进YOLOv3算法在肺结节检测中的应用[J]. 激光杂志, 2022, 43(5): 207-213. GUO X M, HUANG X. Application of improved YOLOv3 algorithm in lung nodule detection[J]. Laser Journal, 2022, 43(5): 207-213. [34] MISRA D. Mish: a self regularized nonmonotonic activation function[J]. arXiv:1908.08681, 2019. [35] KAPOOR A, SINGHAL A. A comparative study of k-means, k-means++ and fuzzy c-means clustering algorithms[C]//Proceedings of the 3rd IEEE International Conference on Computational Intelligence and Communication Technology (CICT), Ghaziabad, India, Feb 9-10, 2017. Piscataway, NJ: IEEE Computer Society, 2017: 1-6. [36] HOU Z, LIU X, CHEN L. Object detection algorithm for improving nonmaximum suppression using GIoU[C]//Proceedings of the 2019 2nd International Conference on Communication, Network and Artificial Intelligence, Guangzhou, China, Dec 27-29, 2019. Bristol, England: IOP Conference Series, 2020. [37] 赵奎, 仇慧琪, 李旭, 等. 结合注意力和多路径融合的实时肺结节检测算法[J]. 计算机应用, 2024, 44(3): 945-952. ZHAO K, QIU H Q, LI X, et al. Realtime pulmonary nodule detection algorithm combining attention and multipath fusion[J]. Journal of Computer Applications, 2024, 44(3): 945-952. [38] JIANG P, ERGU D, LIU F, et al. A review of YOLO algorithm developments[J]. Procedia Computer Science, 2022, 199: 1066-1073. [39] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, Sep 8-14, 2018. Berlin, Germany: Springer-Verlag, 2018: 3-19. [40] WU X, ZHANG H, SUN J, et al. YOLO-MSRF for lung nodule detection[J]. Biomedical Signal Processing and Control, 2024, 94: 106318. [41] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag of freebies sets new state of the art for real-time object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, Canada, Jun 17-24, 2023. Los Alamitos, CA, USA: IEEE Computer Society, 2023: 7464-7475. [42] 胥阳, 佘青山, 杨勇, 等. 基于密集残差连接的肺结节检测方法[J]. 传感技术学报, 2024, 37(1): 71-79. XU Y, SHE Q S, YANG Y, et al. Lung nodule detection method based on dense residual connection[J]. Chinese Journal of Sensors and Actuators, 2024, 37(1): 71-79. [43] CICEK O, ABDULKADIR A, LIENKAMP S S, et al. 3D U-Net: learning dense volumetric segmentation from sparse annotation[C]//Proceedings of the 19th International Conference on Medical Image Computing and Computer Assisted Intervention, Athens, Greece, Oct 17-21, 2016. Berlin, Germany: Springer-Verlag, 2016: 424-432. [44] HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely connected convolutional networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, Jul 21-26, 2017. Piscataway, NJ: IEEE Computer Society, 2017: 4700-4708. [45] 秦源源, 张鸿. 基于注意力特征金字塔网络的肺结节检测算法[J]. 计算机应用, 2023, 43(7): 2311-2318. QIN Y Y, ZHANG H. Pulmonary nodule detection algorithm based on attention feature pyramid networks[J]. Journal of Computer Applications, 2023, 43(7): 2311-2318. [46] ZHU L, ZHU H, YANG S, et al. Pulmonary nodule detection based on hierarchical-split HRNet and feature pyramid network with atrous convolution[J]. Biomedical Signal Processing and Control, 2023, 85: 105024. [47] YUAN P, LIN S, CUI C, et al. HS-ResNet: hierarchical-split block on convolutional neural network[J]. arXiv: 2010.07621, 2020. [48] ZHANG L, ZHANG J, LI Z, et al. A multiple channel and atrous convolution network for ultrasound image segme- ntation[J]. Medical Physics, 2020, 47(12): 6270-6285. [49] CUI F, LI Y, LUO H, et al. SF2T: leveraging swin transfor-mer and two-stream networks for lung nodule detection[J]. Biomedical Signal Processing and Control, 2024, 95: 106389. [50] LIU Z, LIN Y, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, Oct 11-17, 2021. Piscataway, NJ: IEEE Computer Society, 2021: 10012-10022. [51] 刘涌涛, 王宝珠, 郭志涛. 基于改进YOLOv7网络模型的肺结节检测算法[J]. 中国医学物理学杂志, 2023, 40(12): 1509-1517. LIU Y T, WANG B Z, GUO Z T. Lung nodule detection algorithm using improved YOLOv7 network model[J]. Chinese Journal of Medical Physics, 2023, 40(12): 1509-1517. [52] GEVORGYAN Z. SIoU loss: more powerful learning for bounding box regression[J]. arXiv:2205.12740, 2022. [53] 王梦南, 赵涓涓, 肖宁, 等. 基于可变形卷积神经网络的肺结节假阳性识别[J]. 计算机工程与设计, 2022, 43(6): 1732-1739. WANG M N, ZHAO J J, XIAO N, et al. False positive identification of pulmonary nodules based on deformable convolutional neural network[J]. Computer Engineering and Design, 2022, 43(6): 1732-1739. [54] ZUO W X, ZHOU F Q, HE Y Z. An embedded multi-branch 3D convolution neural network for false positive reduction in lung nodule detection[J]. Journal of Digital Imaging, 2020, 33(4): 846-857. [55] ZHAO D , LIU Y, YIN H , et al. A novel multi scale CNNs for false positive reduction in pulmonary nodule detection[J]. Expert Systems with Applications, 2022, 207: 117652. [56] 张佳嘉, 张小洪. 多分支卷积神经网络肺结节分类方法及其可解释性[J]. 计算机科学, 2020, 47(9): 129-134. ZHANG J J, ZHANG X H. Multi-branch convolutional neural network for lung nodule classification and its interpretability[J]. Computer Science, 2020, 47(9): 129-134. [57] SHEN S, HAN S X, ABERLE D R, et al. An interpretable deep hierarchical semantic convolutional neural network for lung nodule malignancy classification[J]. Expert Systems with Applications, 2019, 128: 84-95. [58] 罗锦钊, 孙玉龙, 钱增志, 等.人工智能大模型综述及展望[J]. 无线电工程, 2023, 53(11): 2461-2472. LUO J Z, SUN Y L, QIAN Z Z, et al. Overview and prospect of artificial intelligence large models[J]. Radio Engineering, 2023, 53(11): 2461-2472. [59] ZHONG R, XU Y, ZHANG C, et al. Leveraging large language model to generate a novel metaheuristic algorithm with crispe framework[J]. arXiv:2403.16417, 2024. [60] DOI H, OSAWA T, TSUTSUMIDA N. The role of large pre-trained models in ecology and biodiversity conservation: opportunities and challenges[J]. Authorea Preprints, 2024. [61] GU J, CHO H C, KIM J, et al. CheX-GPT: harnessing large language models for enhanced chest X-ray report labeling[J]. arXiv:2401.11505, 2024. [62] SMIT A, JAIN S, RAJPURKAR P, et al. CheXbert: combi-ning automatic labelers and expert annotations for accurate radiology report labeling using BERT[J]. arXiv:2004.09167, 2020. [63] RADFORD A, KIM J W, HALLACY C, et al. Learning transferable visual models from natural language superv- ision[C]//Proceedings of the International Conference on Machine Learning, San Diego, CA, United States, Jul 18-24, 2021. New York: ACM, 2021: 8748-8763. [64] LEI Y, LI Z, SHEN Y, et al. CLIP-lung: textual knowledge guided lung nodule malignancy prediction[C]//Proceedings of the International Conference on Medical Image Computing and Computer Assisted Intervention, Vancouver, Canada, Oct 8-12, 2023. Cham: Springer-Verlag, 2023: 403-412. [65] LUO Y, HOOSHANGNEJAD H, FENG X, et al. False posi- tive reduction in pulmonary cancer detection based on GPT-4V[C]//Proceedings of the ?International Conference on Medical Imaging with Deep Learning, Paris, France, Jul 3, 2024. [66] YANG Z, LI L, LIN K, et al. The dawn of LMMs: preliminary explorations with GPT-4V (ision)[J]. arXiv:2309.17421, 2023. [67] HOOSHANGNEJAD H, FENG X, HUANG G, et al. EXACT-Net: EHR-guided lung tumor auto-segmentation for non-small cell lung cancer radiotherapy[J]. arXiv:2402. 14099, 2024. [68] SHAHIN M, CHEN F F, HOSSEINZADEH A, et al. A novel approach to voice of customer extraction using GPT-3.5 Turbo: linking advanced NLP and lean six sigma4.0[J]. The International Journal of Advanced Manufacturing Technology, 2024: 1-16. [69] BRAGAGNOLO A, TARTAGLIONE E, FIANDROTTI A, et al. ON the role of structured pruning for neural network compression[C]//Proceedings of the IEEE International Conference on Image Processing (ICIP), Sep 19-22, 2021. Piscataway, NJ: IEEE Computer Society, 2021. [70] 邵仁荣, 刘宇昂, 张伟, 等. 深度学习中知识蒸馏研究综述[J]. 计算机学报, 2022, 45(8): 1638-1673. SHAO R R, LIU Y A, ZHANG W, et al. A survey of knowledge distillation in deep learning[J]. Chinese Journal of Computers, 2022, 45(8): 1638-1673. [71] JACOB B, KLIGYS S, CHEN B, et al. Quantization and training of neural networks for efficient integer-arithmetic-only inference[C]//Proceedings of the 31st IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, Jun 18-23, 2018. Piscataway,NJ: IEEE Computer Society, 2018: 2704-2713. [72] ZHANG X, ZHOU X Y, LIN M X, et al. ShuffleNet: an extremely efficient convolutional neural networkfor mobile devices[C]//Proceedings of the 31st IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, Jun 18-23, 2018. Piscataway, NJ: IEEE Computer Society, 2018: 6848-6856. |
[1] | WANG Cailing, YAN Jingjing, ZHANG Zhidong. Review on Human Action Recognition Methods Based on Multimodal Data [J]. Computer Engineering and Applications, 2024, 60(9): 1-18. |
[2] | LIAN Lu, TIAN Qichuan, TAN Run, ZHANG Xiaohang. Research Progress of Image Style Transfer Based on Neural Network [J]. Computer Engineering and Applications, 2024, 60(9): 30-47. |
[3] | YANG Chenxi, ZHUANG Xufei, CHEN Junnan, LI Heng. Review of Research on Bus Travel Trajectory Prediction Based on Deep Learning [J]. Computer Engineering and Applications, 2024, 60(9): 65-78. |
[4] | SONG Jianping, WANG Yi, SUN Kaiwei, LIU Qilie. Short Text Classification Combined with Hyperbolic Graph Attention Networks and Labels [J]. Computer Engineering and Applications, 2024, 60(9): 188-195. |
[5] | CHE Yunlong, YUAN Liang, SUN Lihui. 3D Object Detection Based on Strong Semantic Key Point Sampling [J]. Computer Engineering and Applications, 2024, 60(9): 254-260. |
[6] | QIU Yunfei, WANG Yifan. Multi-Level 3D Point Cloud Completion with Dual-Branch Structure [J]. Computer Engineering and Applications, 2024, 60(9): 272-282. |
[7] | YE Bin, ZHU Xingshuai, YAO Kang, DING Shangshang, FU Weiwei. Binocular Depth Measurement Method for Desktop Interaction Scene [J]. Computer Engineering and Applications, 2024, 60(9): 283-291. |
[8] | ZHOU Bojun, CHEN Zhiyu. Survey of Few-Shot Image Classification Based on Deep Meta-Learning [J]. Computer Engineering and Applications, 2024, 60(8): 1-15. |
[9] | SUN Shilei, LI Ming, LIU Jing, MA Jingang, CHEN Tianzhen. Research Progress on Deep Learning in Field of Diabetic Retinopathy Classification [J]. Computer Engineering and Applications, 2024, 60(8): 16-30. |
[10] | WANG Weitai, WANG Xiaoqiang, LI Leixiao, TAO Yihao, LIN Hao. Review of Construction and Applications of Spatio-Temporal Graph Neural Network in Traffic Flow Prediction [J]. Computer Engineering and Applications, 2024, 60(8): 31-45. |
[11] | XIE Weiyu, ZHANG Qiang. Review on Detection of Drones and Birds in Photoelectric Images Based on Deep Learning Convolutional Neural Network [J]. Computer Engineering and Applications, 2024, 60(8): 46-55. |
[12] | ZHOU Dingwei, HU Jing, ZHANG Liangrui, DUAN Feiya. Collaborative Correction Technology of Label Omission in Dataset for Object Detection [J]. Computer Engineering and Applications, 2024, 60(8): 267-273. |
[13] | CHANG Xilong, LIANG Kun, LI Wentao. Review of Development of Deep Learning Optimizer [J]. Computer Engineering and Applications, 2024, 60(7): 1-12. |
[14] | ZHOU Yutong, MA Zhiqiang, XU Biqi, JIA Wenchao, LYU Kai, LIU Jia. Survey of Deep Learning-Based on Emotion Generation in Conversation [J]. Computer Engineering and Applications, 2024, 60(7): 13-25. |
[15] | JIANG Liang, ZHANG Cheng, WEI Dejian, CAO Hui, DU Yuzheng. Deep Learning in Aided Diagnosis of Osteoporosis [J]. Computer Engineering and Applications, 2024, 60(7): 26-40. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||