[1] SZELISKI R. Computer vision: algorithms and applications[M]. [S.l.]: Springer, 2022.
[2] HIRSCHBERG J, MANNING C D. Advances in natural language processing[J]. Science, 2015, 349(6245): 261-266.
[3] GAIKWAD S K, GAWALI B W, YANNAWAR P. A review on speech recognition technique[J]. International Journal of Computer Applications, 2010, 10(3): 16-24.
[4] MANIFAVAS C, HATZIVASILIS G, FYSARAKIS K, et al. A survey of lightweight stream ciphers for embedded systems[J]. Security and Communication Networks, 2016, 9(10): 1226-1246.
[5] GU J, WANG Z, KUEN J, et al. Recent advances in convolutional neural networks[J]. Pattern Recognition, 2018, 77: 354-377.
[6] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft coco: common objects in context[C]//Proceedings of 13th European Conference on Computer Vision(ECCV 2014), Zurich, Switzerland, September 6-12, 2014. [S.l.]: Springer International Publishing, 2014: 740-755.
[7] ANDRILUKA M, PISHCHULIN L, GEHLER P, et al. 2D human pose estimation: new benchmark and state of the art analysis[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 3686-3693.
[8] WANG C H, HUANG K Y, YAO Y, et al. Lightweight deep learning: an overview[J]. IEEE Consumer Electronics Magazine, 2024, 13(4): 51-64.
[9] LI Y, JIA S, LI Q. BalanceHRNet: an effective network for bottom-up human pose estimation[J]. Neural Networks, 2023, 161: 297-305.
[10] CHENG B, XIAO B, WANG J, et al. Higherhrnet: scale-aware representation learning for bottom-up human pose estimation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 5386-5395.
[11] LI X, LI C, RAHAMAN M M, et al. A comprehensive review of computer-aided whole-slide image analysis: from datasets to feature extraction, segmentation, classification and detection approaches[J]. Artificial Intelligence Review, 2022, 55(6): 4809-4878.
[12] CHEN Y, XIA R, YANG K, et al. MFFN: image super-resolution via multi-level features fusion network[J]. The Visual Computer, 2023, 40: 489-504.
[13] HOWARD A G, ZHU M, CHEN B, et al. Mobilenets: efficient convolutional neural networks for mobile vision applications[J]. arXiv:1704.04861, 2017.
[14] HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13713-13722.
[15] WANG J, CHEN K, XU R, et al. Carafe: content-aware reassembly of features[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 3007-3016.
[16] DROZDZAL M, VORONTSOV E, CHARTRAND G, et al. The importance of skip connections in biomedical image segmentation[C]//Proceedings of the International Workshop on Deep Learning in Medical Image Analysis, International Workshop on Large-Scale Annotation of Biomedical Data and Expert Label Synthesis. Cham: Springer, 2016: 179-187.
[17] LIU W, BAO Q, SUN Y, et al. Recent advances of monocular 2D and 3D human pose estimation: a deep learning perspective[J]. ACM Computing Surveys, 2022, 55(4): 1-41.
[18] CHEN Y, WANG Z, PENG Y, et al. Cascaded pyramid network for multi-person pose estimation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7103-7112.
[19] HE K, GKIOXARI G, DOLLáR P, et al. Mask R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2961-2969.
[20] XIAO B, WU H, WEI Y. Simple baselines for human pose estimation and tracking[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 466-481.
[21] SUN K, XIAO B, LIU D, et al. Deep high-resolution representation learning for human pose estimation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 5693-5703.
[22] YU C, XIAO B, GAO C, et al. Lite-HRNet: a lightweight high-resolution network[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 10440-10450.
[23] CAO Z, SIMON T, WEI S E, et al. Realtime multi-person 2D pose estimation using part affinity fields[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 7291-7299.
[24] NEWELL A, YANG K, DENG J. Stacked hourglass networks for human pose estimation[C]//Proceedings of 14th European Conference on Computer Vision (ECCV 2016), Amsterdam, The Netherlands, October 11-14, 2016. [S.l.]: Springer International Publishing, 2016: 483-499.
[25] KOCABAS M, KARAGOZ S, AKBAS E. MultiPoseNet: fast multi-person pose estimation using pose residual network[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 417-433.
[26] GENG Z, SUN K, XIAO B, et al. Bottom-up human pose estimation via disentangled keypoint regression[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 14676-14686.
[27] IANDOLA F N, HAN S, MOSKEWICZ M W, et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and<0.5 MB model size[J]. arXiv: 1602.07360, 2016.
[28] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
[29] ZHANG X, ZHOU X, LIN M, et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 6848-6856.
[30] HOWARD A G, ZHU M, CHEN B, et al. Mobilenets: efficient convolutional neural networks for mobile vision applications[J]. arXiv:1704.04861, 2017.
[31] 邓辉, 徐杨. 融入注意力和密集连接的轻量型人体姿态估计[J]. 计算机工程与应用, 2022, 58(16): 265-273.
DENG H, XU Y. Lightweight human pose estimation based on attention and dense connection[J]. Computer Engineering and Applications, 2022, 58(16): 265-273.
[32] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.
[33] WOO S, PARK J, LEE J Y, et al. Cbam: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 3-19.
[34] HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13713-13722.
[35] LI J, WANG C, ZHU H, et al. Crowdpose: efficient crowded scenes pose estimation and a new benchmark[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 10863-10872.
[36] PAPANDREOU G, ZHU T, CHEN L C, et al. PersonLab: person pose estimation and instance segmentation with a bottom-up, part-based, geometric embedding model[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 269-286.
[37] PAPANDREOU G, ZHU T, KANAZAWA N, et al. Towards accurate multi-person pose estimation in the wild[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 4903-4911.
[38] FANG H S, XIE S, TAI Y W, et al. RMPE: regional multi-person pose estimation[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2334-2343.
[39] HUANG S, GONG M, TAO D. A coarse-fine network for keypoint localization[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 3028-3037. |