[1] 李帆, 高东, 许欣, 等. 改进蝙蝠算法柔性作业车间调度问题研究[J]. 计算机工程与应用, 2018, 54(21): 265-270.
LI F, GAO D, XU X, et al. Research of improved bat algorithm for flexible job-shop scheduling problem[J]. Computer Engineering and Applications, 2018, 54(21): 265-270.
[2] 吴树景, 游有鹏, 罗福源. 变邻域保优遗传算法求解柔性车间调度问题[J]. 计算机工程与应用, 2020, 56(22): 236-243.
WU S J, YOU Y P, LUO F Y. Genetic-variable neighborhood search algorithm with elite protection strategy for flexible job shop scheduling problem[J]. Computer Engineering and Applications, 2020, 56(22): 236-243.
[3] 王秋莲, 段星皓. 基于高维多目标候鸟优化算法的柔性作业车间调度[J]. 中国机械工程, 2022, 33(21): 2601-2612.
WANG Q L, DUAN X H. Scheduling of flexible job shop based on high-dimension and multi-objective migrating bird optimization algorithm[J]. China Mechanical Engineering, 2022, 33(21): 2601-2612.
[4] 姜一啸, 吉卫喜, 何鑫, 等. 基于改进非支配排序遗传算法的多目标柔性作业车间低碳调度[J]. 中国机械工程, 2022, 33(21): 2564-2577.
JIANG Y X, JI W X, HE X, et al. Low-carbon scheduling of multi-objective flexible job-shop based on improved NSGA-Ⅱ[J]. China Mechanical Engineering, 2022, 33(21): 2564-2577.
[5] 李益兵, 黄炜星, 吴锐. 基于改进人工蜂群算法的多目标绿色柔性作业车间调度研究[J]. 中国机械工程, 2020, 31(11): 1344.
LI Y B, HUANG W X, WU R. Research on multi-objective green flexible job-shop scheduling based on improved ABC algorithm[J]. China Mechanical Engineering, 2020, 31(11): 1344.
[6] 刘彩洁, 徐志涛, 张钦, 等. 分时电价下基于 NSGA-Ⅱ 的柔性作业车间绿色调度[J]. 中国机械工程, 2020, 31(5): 576-585.
LIU C J, XU Z T, ZHANG Q, et al. Green scheduling of flexible job shops based on NSGA-Ⅱ under TOU power price[J]. China Mechanical Engineering, 2020, 31(5): 576-585.
[7] SONG W, CHEN X, LI Q, et al. Flexible job-shop scheduling via graph neural network and deep reinforcement learning[J]. IEEE Transactions on Industrial Informatics, 2022, 19(2): 1600-1610.
[8] FENG Y, ZHANG L, YANG Z, et al. Flexible job shop scheduling based on deep reinforcement learning[C]//Proceedings of the 2021 5th Asian Conference on Artificial Intelligence Technology, 2021: 660-666.
[9] ZENG Z, LI X, BAI C. A deep reinforcement learning approach to flexible job shop scheduling[C]//Proceedings of the 2022 IEEE International Conference on Systems, Man, and Cybernetics, 2022: 884-890.
[10] BURGGR?F P, WAGNER J, SA?MANNSHAUSEN T, et al. Multi-agent-based deep reinforcement learning for dynamic flexible job shop scheduling[J]. Procedia CIRP, 2022, 112: 57-62.
[11] 邓海波. 基于深度强化学习的时序差分优化算法研究[D]. 重庆: 西南大学, 2021.
DENG H B. The algorithms optimization research of temporal difference based on deep reinforcement learning[D]. Chongqing: Southwest University, 2021.
[12] 赵也践, 王艳红, 张俊, 等. 改进 Q 学习算法在作业车间调度问题中的应用[J]. 系统仿真学报, 2022, 34(6): 1247-1258.
ZHAO Y J, WANG Y H, ZHANG J, et al. Application of improved Q learning algorithm in job shop scheduling problem[J]. Journal of System Simulation, 2022, 34(6): 1247-1258.
[13] HAN B A, YANG J J. Research on adaptive job shop scheduling problems based on dueling double DQN[J]. IEEE Access, 2020, 8: 186474-186495.
[14] YE Y, YONG Z, HAN D. Research on key technology of industrial artificial intelligence and its application in predictive maintenance[J]. Acta Automatica Sinica, 2020, 46(10): 2013-2030.
[15] BRANDIMARTE P. Routing and scheduling in a flexible job shop by tabu search[J]. Annals of Operations Research, 1993, 41(3): 157-183.
[16] 张凯, 毕利, 焦小刚. 集成强化学习算法的柔性作业车间调度问题研究[J]. 中国机械工程, 2023, 34(2): 201-207.
ZHANG K, BI L, JIAO X G. Research on flexible job-shop scheduling problems with integrated reinforcement learning algorithm[J]. China Mechanical Engineering, 2023, 34(2): 201-207.
[17] 孙爱红, 宋豫川, 杨云帆, 等. 考虑关键件加工质量的双资源约束车间调度算法[J]. 中国机械工程, 2022, 33(21): 2590-2600.
SUN A H, SONG Y C, YANG Y F, et al. Dual resource-constrained flexible job shop scheduling algorithm considering machining quality of key jobs[J]. China Mechanical Engineering, 2022, 33(21): 2590-2600. |