[1] WANG W, YAN W, FOTIS K, et al. Cataract surgical rate and socioeconomics: a global study[J]. Investigative Opthalmology & Visual Science, 2016, 57(14): 5872-5881.
[2] GALI H E, SELLA R, AFSHARI N A. Cataract grading systems: a review of past and present[J]. Current Opinion in Ophthalmology, 2019, 30(1): 13-18.
[3] OZGOKCE M, BATUR M, ALPASLAN M, et al. A comparative evaluation of cataract classifications based on shear-wave elastography and B-mode ultrasound findings[J]. Journal of Ultrasound, 2019, 22(4): 447-452.
[4] CHYLACKL T, WOLFEJ K, SINGERD M, et al. The lens opacities classification system III[J]. Archives of Ophthalmology, 1993, 111(6): 831-836.
[5] GALI H E, SELLA R, AFSHARI N A. Cataract grading systems: a review of past and present[J]. Current Opinion in Ophthalmology, 2019, 30(1): 13-18.
[6]李建强, 张苓琳, 张莉, 等.基于深度学习的白内障识别与分级[J].第二军医大学学报, 2018, 39(8): 878-885.
LI J Q, ZHANG L L, ZHANG L, et al. Cataract recognition and grading based on deep learning[J]. Academic Journal of Second Military Medical University, 2018, 39(8): 878-885.
[7] XU X, ZHANG L, LI J, et al. A hybrid global-local representation CNN model for automatic cataract grading[J]. IEEE Journal of Biomedical and Health Informatics, 2020, 24(2): 556-567.
[8] 刘振宇, 宋建聪.基于深度学习的白内障自动诊断方法研究[J].微处理机, 2019, 40(3): 48-52.
LIU Z Y, SONG J C. Research on automatic diagnosis method of cataract based on deep learning[J]. Microprocessors, 2019, 40(3): 48-52.
[9] WONG A L, LEUNG K S, WEINREB R N, et al. Quantitative assessment of lens opacities with anterior segment optical coherence tomography[J]. British Journal of Ophthalmology, 2009, 93(1): 61-65.
[10] HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13713-13722.
[11] HUANG Z, WANG X, HUANG L, et al. Ccnet: criss-cross attention for semantic segmentation[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 603-612.
[12] HU J, SHEN L, SUN G, et al. Squeeze-and-excitation networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018.
[13] GU, J X, WANG Z H, KUEN J, et al. Recent advances in convolutioal neural networks[J]. Pattern Recognition, 2018, 77: 354-377.
[14] DOS SANTOS V A, SCHMETTERER L, STEGMANN H, et al. CorneaNet: fast segmentation of cornea OCT scans of healthy and keratoconic eyes using deep learning[J]. Biomedical Optics Express, 2019, 10(2): 622.
[15] BRENTON K, MARK D, GAO T, et al. Real-time corneal segmentation and 3D needle tracking in intrasurgical OCT[J]. Biomedical Optics Express, 2018, 9(6): 2716-2732.
[16] FU H Z, BASKARAN M, XU Y W, et al. A deep learning system for automated angle-closure detection in anterior segment optical coherence tomography images[J]. American Journal of Ophthalmology, 2019, 203: 37-45.
[17] FU H, XU Y, LIN S, et al. Multi-context deep network for angle-closure glaucoma screening in anterior segment OCT[J].arXiv:1809.03239, 2018.
[18] CHEN D, LI Z, HUANG J, et al. Lens nuclear opacity quantitation with long-range swept-source optical coherence tomography: correlation to LOCS III and a scheimpflug imaging-based grading system[J]. British Journal of Ophthalmology, 2018, 103(8).
[19] ALBERTO D C, ANTONIO B, SILVESTRE M, et al. Three-dimensional cataract crystalline lens imaging with swept-source optical coherence tomography[J]. Investigative Opthalmology & Visual Science, 2018, 59(2): 897-903.
[20] MAKHOTKINA N Y, BERENDSCHOT T T J M, VAN DEN BIGGELAAR F J H M, et al. Comparability of subjective and objective measurements of nuclear density in cataract patients[J]. Acta Ophthalmologica, 2018, 96(4): 356-363.
[21] WANG W, ZHANG J, GU X, et al. Objective quantification of lens nuclear opacities using swept-source anterior segment optical coherence tomography[J]. British Journal of Ophthalmology, 2022, 106(6): 790-794.
[22] CAO G, ZHAO W, HIGASHITA R, et al. An efficient lens structures segmentation method on AS-OCT images[C]// 2020 42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) in conjunction with the 43rd Annual Conference of the Canadian Medical and Biological Engineering Society, 2020.
[23] ZHANG X, XIAO Z, HIGASHITA R, et al. A novel deep learning method for nuclear cataract classification based on anterior segment optical coherence tomography images[C]//2020 IEEE International Conference on Systems, Man, and Cybernetics (IEEE SMC), 2020.
[24] 章晓庆, 方建生, 肖尊杰, 等.基于眼前节相干光断层扫描成像的核性白内障分类算法[J].计算机科学, 2022, 49(3): 204-210.
ZHANG X Q, FANG J S, XIAO J J, et al. Classification algorithm of nuclear cataract based on anterior segment coherence tomography image[J].Computer Science, 2022, 49(3): 204-210.
[25] XIAO Z, ZHANG X, HIGASHITA R, et al. Gated channel attention network for cataract classification on AS-OCT image[C]//International Conference on Neural Information Processing. Cham: Springer, 2021: 357-368.
[26] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//European Conference on Computer Vision.Cham: Springer, 2018.
[27] WANG X, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7794-7803.
[28] 陈朝一, 许波, 吴英, 等. 医学图像处理中的注意力机制研究综述[J]. 计算机工程与应用, 2022, 58(5): 23-33.
CHEN C Y, XU B, WU Y, et al. Overview of research on attention mechanism in medical image processing[J]. Computer Engineering and Applications, 2022, 58(5): 23-33.
[29] 王静, 孙紫雲, 郭苹, 等. 改进YOLOv5的白细胞检测算法[J]. 计算机工程与应用, 2022, 58(4): 134-142.
WANG J, SUN Z Y, GUO P, et al. Improved leukocyte detection algorithm of YOLOv5[J]. Computer Engineering and Applications, 2022, 58(4): 134-142.
[30] WANG Q, WU B, ZHU P, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020.
[31] LEE H J, KIM H E, NAM H. SRM: a style-based recalibration module for convolutional neural networks[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 1854-1862.
[32] PARK J, WOO S, LEE J Y, et al. A simple and light-weight attention module for convolutional neural networks[J]. International Journal of Computer Vision, 2020, 128(4): 783-798.
[33] IOFFE S, SZEGEDY C. Batch normalization: accelerating deep network training by reducing internal covariate shift[C]//International Conference on Machine Learning, 2015: 448-456.
[34] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[35] KERMANY D S, GOLDBAUM M, CA I W, et al. Identifying medical diagnoses and treatable diseases by image-based deep learning[J]. Cell, 2018, 172(5): 1122-1131.
[36] DAS V, DANDAPAT S, BORA P K. Multi-scale deep feature fusion for automated classification of macular pathologies from OCT images[J]. Biomedical Signal Processing and Control, 2019, 54: 101605.
[37] CAO L, LI H, ZHANG Y, et al. Hierarchical method for cataract grading based on retinal images using improved Haar wavelet[J]. Information Fusion, 2019, 53: 196-208.
[38] ZHANG X, HU Y, FANG J S, et al. Machine learning for cataract classification and grading on ophthalmic imaging modalities: a survey[J]. arXiv:2012.04830, 2020.
[39] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv:1409. 1556, 2014.
[40] FANG L, WANG C, LI S, et al. Attention to lesion: lesion-aware convolutional neural network for retinal optical coherence tomography image classification[J]. IEEE Transactions on Medical Imaging, 2019, 38(8): 1959-1970.
[41] ZHOU B, KHOSLA A, LAPEDRIZA A, et al. Learning deep features for discriminative localization[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.
[42] THYLEFORS B, CHYLACK L T, KONYAMA K, et al. A simplified cataract grading system the WHO cataract grading group[J]. Ophthalmic Epidemiol, 2002, 9(2): 83-95. |