[1] MEGURO Y. Textual enhancement, grammar learning, reading comprehension, and tag questions[J]. Language Teaching Research, 2019, 23(1): 58-77.
[2] ALIZAMINI F G, PEDRAM M M, ALISHAHI M, et al. Data quality improvement using fuzzy association rules[C]//2010 International Conference on Electronics and Information Engineering, 2010: 468-472.
[3] WAND Y, WANG R Y. Anchoring data quality dimensions in ontological foundations[J]. Communications of the ACM, 1996, 39(11): 86-95.
[4] WU T, CHEN L, HUI P, et al. Hear the whole story: towards the diversity of opinion in crowdsourcing markets[J]. Proceedings of the VLDB Endowment, 2015, 8(5): 485-496.
[5] 李安然.面向特定任务的大规模数据集质量高效评估[D].合肥: 中国科学技术大学, 2021.
LI A R. Efficient task-oriented quality assessment for large-scale datasets[D].Hefei: University of Science and Technology of China, 2021
[6] KANG Y, ZHANG Y, KUMMERFELD J K, et al. Data collection for a production dialogue system: a clinic perspective[C]//16th Annual Conference of the North American Chapter of the Association of the Computational Linguistics (NAACL), 2018.
[7] CHEN H, CHEN J, DING J. Data evaluation and enhancement for quality improvement of machine learning[J]. IEEE Transactions on Reliability, 2021, 70(2): 831-847.
[8] TALEB I, SERHANI M A, DSSOULI R. Big data quality assessment model for unstructured data[C]//2018 International Conference on Innovations in Information Technology (IIT), 2018: 69-74.
[9] XIAO X, ZHANG L, LI X Y. Noisy data collection towards diversity maximization[C]//2019 5th International Conference on Big Data Computing and Communications (BIGCOM), 2019: 283-287.
[10] LI A, ZHANG L, QIAN J, et al. TODQA: efficient task-oriented data quality assessment[C]//2019 15th International Conference on Mobile Ad-Hoc and Sensor Networks (MSN), 2019: 81-88.
[11] LI B, ZHOU H, HE J, et al. On the sentence embeddings from pre-trained language models[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2020: 9119-9130.
[12] GAO T, YAO X, CHEN D. SimCSE: simple contrastive learning of sentence embeddings[C]//Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, 2021.
[13] 胡晓峰, 李伟, 马萍, 等. 复杂仿真实验结果可信度评估方法[J].上海航天, 2019, 36(4): 37-41.
HU X F, LI W, MA P, et al. Reliability evaluation method of complex simulation results[J]. Shanghai Aerospace Corporation, 2019, 36(4): 37-41.
[14] CHOE Y J, HAM J, PARK K, et al. A neural grammatical error correction system built on better pre-training and sequential transfer learning[C]//Proceedings of the Fourteenth Workshop on Innovative Use of NLP for Building Educational Applications, 2019: 213-227.
[15] MALKOV Y A, YASHUNIN D A. Efficient and robust approximate nearest neighbor search using hierarchical navigable small world graphs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 42(4): 824-836.
[16] 王辰成, 杨麟儿, 王莹莹, 等. 基于Transformer增强架构的中文语法纠错方法[J]. 中文信息学报, 2020, 34(6): 106-114.
WANG C C, YANG L E, WANG Y Y, et al. Chinese grammatical error correction method based on transformer enhanced architecture[J]. Journal of Chinese Information Processing, 2020, 34(6): 106-114.
[17] WEI J, ZOU K. EDA: easy data augmentation techniques for boosting performance on text classification tasks[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), 2019: 6382-6388.
[18] YANG L, WANG C, CHEN Y, et al. Controllable data synthesis method for grammatical error correction[J]. Frontiers of Computer Science, 2022, 16(4): 1-10.
[19] 李建义, 白雪丽, 王洪俊, 等. 关于中文拼写纠错数据增强的方法[J].北华航天工业学院学报, 2021, 31(6): 1-4.
LI J Y, BAI X L, WANG H J, et al. Data enhancement approach of Chinese spelling error correction[J]. Journal of North China Institute of Aerospace Engineering, 2021, 31(6):1-4.
[20] ZHANG Y, LI Z, BAO Z, et al. MuCGEC: a multi-reference multi-source evaluation dataset for Chinese grammatical error correction[J]. arXiv:2204.10994, 2022.
[21] 周锦程. 中文语法自动纠错系统的研究与实现[D]. 大庆: 东北石油大学, 2020.
ZHOU J C. Research and implementation of Chinese grammar automatic error correction system[D]. Daqing: Northeast Petroleum University, 2020.
[22] DAHLMEIER D, NG H T. Better evaluation for grammatical error correction[C]//Proceedings of the 2012 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2012: 568-572. |