[1] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector[C]//Proceedings of the European Conference on Computer Vision, 2016: 21-37.
[2] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detetion[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[3] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 7263-7271.
[4] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[5] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv:2004.10934, 2020.
[6] GE Z, LIU S, WANG F, et al. YOLOX: exceeding YOLO series in 2021[J]. arXiv:1606.08415, 2016.
[7] LI C Y, LI L L, JIANG H L, et al. YOLOv6: a single-stage object detection framework for industrial applications[J]. arXiv:2209.02976, 2022.
[8] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 7464-7475.
[9] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2980-2988.
[10] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.
[11] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 936-944.
[12] LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 8759-8768.
[13] QIAO S Y, CHEN L C, YUILLE A. DetectoRS: detecting objects with recursive feature pyramid and switchable atrous convolution[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 10208-10219.
[14] QI C, GAO J F, PEARSON S, et al. Tea chrysanthemum detection under unstructured environments using the TC-YOLO model[J]. Expert Systems with Applications, 2022, 193: 116473.
[15] 何湘杰, 宋晓宁. YOLOv4-Tiny的改进轻量级目标检测算法[J]. 计算机科学与探索, 2024, 18(1): 138-150.
HE X J, SONG X N. Improved YOLOv4-Tiny lightweight target detection algorithm[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 138-150.
[16] 张华卫, 张文飞, 蒋占军, 等. 引入上下文信息和Attention Gate的GUS-YOLO遥感目标检测算法[J]. 计算机科学与探索, 2024, 18(2): 453-464.
ZHANG W H, ZHANG W F, JIANG Z J, et al. GUS-YOLO remote sensing target detection algorithm introducing context information and Attention Gate[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(2): 453-464.
[17] YANG X, YANG J R, YAN J C, et al. SCRDet: towards more robust detection for small, cluttered and rotated objects[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 8232-8241.
[18] CHEN C R, ZHANG Y, LV Q X, et al. RRNet: a hybrid detector for object detection in drone-captured images[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision Workshop, 2019: 100-108.
[19] LIN Q Z, DING Y, XU H, et al. ECascade-RCNN: enhanced cascade RCNN for multi-scale object detection in UAV images[C]//Proceedings of the International Conference on Automation, Robotics and Applications, 2021: 268-272.
[20] TANG W Q, SUN J, WANG G. Horizontal feature pyramid network for object detection in UAV images[C]//Proceedings of the China Automation Congress, 2021: 7746-7750.
[21] LIU X, ZHANG Z Y. A vision-based target detection, tracking, and positioning algorithm for unmanned aerial vehicle[J]. Wireless Communications and Mobile Computing, 2021, 2021(1): 1-12.
[22] LI C L, YANG T J N, ZHU S J, et al. Density map guided object detection in aerial images[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, 2020: 737-746.
[23] DUAN C Z, WEI Z W, ZHANG C, et al. Coarse-grained density map guided object detection in aerial images[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, 2021: 2789-2798.
[24] LIU Z M, GAO G Y, SUN L, et al. HRDNet: high-resolution detection network for small objects[C]//Proceedings of the IEEE International Conference on Multimedia and Expo, 2021: 1-6.
[25] LI W T, CHEN Y J, HU K X, et al. Oriented RepPoints for aerial object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 1819-1828.
[26] ZHANG X, SONG Y Z, SONG T T, et al. AKConv: convolutional kernel with arbitrary sampled shapes and arbitrary number of parameters[J]. arXiv:2311.11587, 2023.
[27] OUYANG D L, HE S, ZHANG G Z, et al. Efficient MultiScale attention module with cross-spatial learning[C]//Proceedings of the IEEE International Conference on Acoustics Speech and Signal Processing, 2023: 1-5.
[28] TAN M X, PANG R M, V. LE Q. EfficientDet: scalableand efficient object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 10778-10787.
[29] DAI J F, QI H Z, XIONG Y W, et al. Deformable convolutional networks[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 764-773.
[30] DU D W, ZHU P F, WEN L Y, et al. VisDrone-DET2019: the vision meets drone object detection in image challenge results[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision Workshop, 2019: 213-22.
[31] WEI W, CHENG, Y, HE J F, et al. A review of small object detection based on deep learning[J]. Neural Computing and Applications, 2024, 36(12): 6283-6303.
[32] YANG C H Y, HUANG Z H, WANG N Y. QueryDet: cascaded sparse query for accelerating high-resolution small object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 13658-13667.
[33] CAI Z W, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 6154-6162.
[34] ZHU X K, LU S C, WANG X. TPH-YOLOv5: improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, 2021: 2778-2788.
[35] WANG G, CHEN Y F, PEI A, et al. UAV-YOLOv8: a small-object-detection model based on improved YOLOv8 for UAV aerial photography scenarios[J]. ?Sensors,?2023, ?23(16): 7190.
[36] 付锦燚, 张自嘉, 孙伟, 等. 改进YOLOv8的航拍图像小目标检测算法[J]. 计算机工程与应用, 2024, 60(6): 100-109.
FU J Y, ZHANG Z J, SUN W, et al. Improved YOLOv8 small target detection algorithm in aerial images[J]. Computer Engineering and Applications, 2024, 60(6): 100-109.
[37] DUAN K W, BAI S, XIE L X, et al. CenterNet: keypoint triplets for object detection[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 6568-6577.
[38] 吴明杰, 云利军, 陈载清, 等. 改进YOLOv5s的无人机视角下小目标检测算法[J]. 计算机工程与应用, 2024, 60(2): 191-199.
WU M J, YUN L J, CHEN Z Q, et al. Improved YOLOv5s small object detection algorithm in UAV view[J]. Computer Engineering and Applications, 2024, 60(2): 191-199. |