[1] KISANTAL M, WOJNA Z, MURAWSKI J, et al. Augmentation for small object detection[J]. arXiv:1902.07296, 2019.
[2] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125.
[3] LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//IEEE Conference on Computer Vision and Pattern Recognition, 2018: 8759-8768.
[4] ZHU X, LYU S, WANG X, et al. TPH-YOLOv5: improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 2778-2788.
[5] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 3-19.
[6] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. arXiv:1706.03762, 2017.
[7] YANG C, HUANG Z, WANG N. QueryDet: cascaded sparse query for accelerating high-resolution small object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 13668-13677.
[8] GAO S, CHENG M M, ZHAO K, et al. Res2net: a new multi-scale backbone architecture[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 43(2): 652-662.
[9] BODLA N, SINGH B, CHELLAPPA R, et al. Soft-NMS improving object detection with one line of code[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 5562-5570.
[10] DU D, ZHU P, WEN L, et al. VisDrone-DET2019: the vision meets drone object detection in image challenge results[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019: 213-226.
[11] 奉志强, 谢志军, 包正伟, 等. 基于改进YOLOv5的无人机实时密集小目标检测算法[J]. 航空学报, 2023, 44(7): 251-265.
FENG Z Q, XIE Z J, BAO Z W, et al. Real-time dense small object detection algorithm for UVA based on improved YOLOv5[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(7): 251-265.
[12] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2980-2988.
[13] CAI Z, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 6154-6162.
[14] MA S, SONG Y, CHENG N, et al. Structured light detection algorithm based on deep learning[C]//IOP Conference Series: Earth and Environmental Science.[S.l.]: IOP Publishing, 2019: 042050.
[15] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[16] LAW H, DENG J. Cornernet: detecting objects as paired keypoints[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 734-750.
[17] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//IEEE Conference on Computer Vision and Pattern Recognition, 2016.
[18] REDMON J, FARHADI A. Yolov3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[19] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. Yolov4: optimal speed and accuracy of object detection[J]. arXiv:2004.10934, 2020.
[20] LI C, LI L, JIANG H, et al. YOLOv6: a single-stage object detection framework for industrial applications[J]. arXiv:2209.02976, 2022.
[21] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 7464-7475.
[22] GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440-1448.
[23] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot mutilbox detector[C]//European Conference on Computer Vision (ECCV). Amsterdam: Springer, 2016: 21-37.
[24] GE Z, LIU S, WANG F, et al. Yolox: exceeding yolo series in 2021[J]. arXiv:2107.08430, 2021.
[25] LIM J S, ASTRID M, YOON H J, et al. Small object detection using context and attention[C]//2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), 2021: 181-186.
[26] SHI Z. Object detection algorithms: a comparison[C]//2022 IEEE 4th International Conference on Civil Aviation Safety and Information Technology (ICCASIT), 2022: 861-865.
[27] 徐光达, 毛国君. 多层级特征融合的无人机航拍图像目标检测[J]. 计算机科学与探索, 2023, 17(3): 635-645.
XU G D, MAO G J. Aerial image object detection of UAV based on multi-level feature fusion[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(3): 635-645.
[28] 谢椿辉, 吴金明, 徐怀宇. 改进YOLOv5的无人机影像小目标检测算法[J]. 计算机工程应用, 2023, 59(9): 198-206.
XIE C H, WU J M, XU H Y. Small object detection algorithm based on improved YOLOv5 in UAV image[J]. Computer Engineering and Applications, 2023, 59(9): 198-206. |