[1] 袁意映. 基于深度学习的遥感图像建筑物分割方法[D]. 银川: 宁夏大学, 2022.
YUAN Y Y. Building segmentation method for remote sensing images based on deep learning[D]. Yinchuan: Ningxia University, 2022.
[2] 吴炜, 骆剑承, 沈占锋, 等. 光谱和形状特征相结合的高分辨率遥感图像的建筑物提取方法[J]. 武汉大学学报 (信息科学版), 2012, 37(7): 800-805.
WU W, LUO C J, SHEN Z F, et al. A method for extracting buildings from high resolution remote sensing images by combining spectral and shape features[J]. Geomatics and Information Science of Wuhan University, 2012, 37(7): 800-805.
[3] 胡荣明, 黄小兵, 黄远程. 增强形态学建筑物指数应用于高分辨率遥感影像中建筑物提取[J]. 测绘学报, 2014, 43(5): 514-520.
HU R M, HUANG X B, HUANG Y C. An enhanced morphological building index for building extraction from high-resoulution images[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(5): 514-520.
[4] CHEN X L, ZHAO J, CHEN S Y. Lightweight semantic segmentation network based on attention coding[J]. Laser & Optoelectronics Progress, 2021, 58(14): 225-233.
[5] LIU P H, LIU X P, LIU M X, et al. Building footprint extraction from high-resolution images via spatial residual inception convolutional neural network[J]. Remote Sensing, 2019, 11(7): 830.
[6] CHEN S, ZUO Q, WANG Z. Semantic segmentation of high resolution remote sensing images based on improved ResU-Net[C]//Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, 2022: 3492-3495.
[7] ZHANG S, WANG C, LI J, et al. MF-Dfnet: a deep learning method for pixel-wise classification of very high-resolution remote sensing images[J]. International Journal of Remote Sensing, 2022, 43: 18-27.
[8] LI D L, CHEN Z Y, FAN W T, et al. Self-attention in reconstruction bias U-net for semantic segmentation of building rooftops in optical remote sensing images[J]. Remote Sensing, 2021, 13(13): 2524.
[9] 王燕, 南佩奇. MFFNet:多级特征融合图像语义分割网络[J]. 计算机科学与探索, 2024, 18(3): 707-717.
WANG Y, NAN P Q. MFFNet:Image segmentation network of multi-level feature fusion[J]. Journal of Frontiers of Computer Science & Technology, 2024, 18(3): 707-717.
[10] 周华平, 邓彬. 融合多层次特征的deeplabV3+轻量级图像分割算法[J]. 计算机工程与应用, 2024, 60(16): 269-275.
ZHOU H P, DENG B. DeeplabV3+lightweight image segmentation algorithm based on multilevel feature fusion[J]. Computer Engineering and Applications, 2024, 60(16): 269-275.
[11] DIAKOGIANNIS F I, WALDNER F, CACCETTA P, et al. ResUNet-A: a deep learning framework for semantic segmentation of remotely sensed data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 162: 94-114.
[12] WANG W H, XIE E, LI X, et al. PVT v2: improved baselines with pyramid vision transformer[J]. Computational Visual Media, 2022, 8(3): 415-424.
[13] WANG W, XIE E, LI X, et al. Pyramid vision transformer: A versatile backbone for dense prediction without convolutions[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 568-578.
[14] TOLSTIKHIN I O, HOULSBY N, KOLESNIKOV A, et al. MLP-mixer: an all-MLP architecture for vision[C]//Advances in Neural Information Processing Systems, 2021: 24261-24272.
[15] SUDRE C H, LI W, VERCAUTEREN T, et al. Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations[J]. arXiv:1707.03237, 2017.
[16] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2980-2988.
[17] JI S P, WEI S Q, LU M. Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery data set[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(1): 574-586.
[18] MAGGIORI E, TARABALKA Y, CHARPIAT G, et al. Can semantic labeling methods generalize to any city? the inria aerial image labeling benchmark[C]//Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium, 2017: 3226-3229.
[19] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[20] ZHAO H S, SHI J P, QI X J, et al. Pyramid scene parsing network[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017: 6230-6239.
[21] CHEN J, LU Y, YU Q, et al. TransUNet: transformers make strong encoders for medical image segmentation[J]. arXiv:2102.04306, 2021.
[22] GUO H N, SU X, TANG S K, et al. Scale-robust deep-supervision network for mapping building footprints from high-resolution remote sensing images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 10091-10100.
[23] GUO H, DU B, ZHANG L, et al. A coarse-to-fine boundary refinement network for building footprint extraction from remote sensing imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 183: 240-252. |