[1] ARYA D, MAEDA H, GHOSH S K, et al. Deep learning-based road damage detection and classification for multiple countries[J]. Automation in Construction, 2021, 132: 103935.
[2] GIRSHICK R. Fast R-CNN[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision, 2015: 1440-1448.
[3] DAI J, LI Y, HE K, et al. R-FCN: object detection via region-based fully convolutional networks[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems, 2016: 379-387.
[4] HE K, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, 2017: 2980-2988.
[5] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[6] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv:2004.10934, 2020.
[7] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the European Conference on Computer Vision, 2016: 21-37.
[8] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 318-327.
[9] CORD A, CHAMBON S. Automatic road defect detection by textural pattern recognition based on AdaBoost[J]. Computer-Aided Civil and Infrastructure Engineering, 2012, 27(4): 244-259.
[10] LI Y, YIN C, LEI Y, et al. RDD-YOLO: road damage detection algorithm based on improved you only look once version 8[J]. Applied Sciences, 2024, 14(8): 3360.
[11] 王海群, 王炳楠, 葛超. 重参数化YOLOv8路面病害检测算法[J]. 计算机工程与应用2024, 60(5): 191-199.
WANG H Y, WANG B N, GE C. Re-parameterized YOLOv8 pavement disease detection algorithm[J]. Computer Engineering and Applications, 2024, 60(5): 191-199.
[12] 李松, 史涛, 井方科. 改进YOLOv8的道路损伤检测算法 [J]. 计算机工程与应用2023, 59(23): 165-174.
LI S, SHI T, JING F K. Improved road damage detection algorithm of YOLOv8[J]. Computer Engineering and Applications, 2023, 59(23): 165-174.
[13] DONG H, SONG K, HE Y, et al. PGA-Net: pyramid feature fusion and global context attention network for automated surface defect detection[J]. IEEE Transactions on Industrial Informatics, 2020, 16(12): 7448-7458.
[14] ZHANG Y, ZUO Z, XU X, et al. Road damage detection using UAV images based on multi-level attention mechanism[J]. Automation in Construction, 2022, 144: 104613.
[15] SU P, HAN H, LIU M, et al. MOD-YOLO: rethinking the YOLO architecture at the level of feature information and applying it to crack detection[J]. Expert Systems with Applications, 2024, 237: 121346.
[16] LIN T, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017: 21-26.
[17] LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 18-23.
[18] ZHU X, HU H, LIN S, et al. Deformable convnets v2: more deformable, better results[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019.
[19] ARYA D, MAEDA H, GHOSH S K, et al. RDD2022: a multi-national image dataset for automatic road damage detection[J]. arXiv:2209.08538, 2022.
[20] HOU Q, ZHOU D, FENG J S. Coordinate attention for efficient mobile network design[J]. arXiv:2103.02907, 2021.
[21] HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.
[22] 杨杰, 蒋严宣, 熊欣燕. 结合Transformer和SimAM轻量化路面损伤检测算法[J/OL]. 铁道科学与工程学报: 1-10[2024-03-25]. https://doi.org/10.19713/j.cnki.43-1423/u.T20232012.
YANG J, JIANG Y X, XIONG X Y. Combining Transformer and SimAM lightweight pavement damage detection algorithms[J]. Journal of Railway Science and Engineering: 1-10[2024-03-25]. https://doi.org/10.19713/j.cnki.43-1423/u.T20232012.
[23] 陈伟, 江志成, 田子建, 等. 基于YOLOv8的煤矿井下人员不安全动作检测算法[J]. 煤炭科学技术: 1-19[2024-03-25]. http://kns.cnki.net/kcms/detail/11.2402.td.20240322.1343.
003.html.
CHEN W, JIANG Z C, TIAN Z J, et al. Unsafe action detection algorithm of underground personnel in coal mine based on YOLOv8[J]. Coal Science and Technology: 1-19[2024-03-25]. http://kns.cnki.net/kcms/detail/11.2402.td.20240322.
1343.003.html.
[24] ZHU L, WANG X, KE Z, et al. BiFormer: vision transformer with bi-level routing attention[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 10323-10333.
[25] 赵鑫, 陈里里, 杨维川, 等. DY-YOLOv5: 基于多重注意力机制的航拍图像目标检测[J]. 计算机工程与应用, 2024, 60(7): 183-191.
ZHAO X, CHEN L L, YANG W C, et al. DY-YOLOv5: target detection for aerial image based on multiple attention[J]. Computer Engineering and Applications, 2024, 60(7): 183-191.
[26] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023: 7464-7475.
[27] LI C, LI L, JIANG H, et al. YOLOv6: a single-stage object detection framework for industrial applications[J]. arXiv:2209.02976, 2022.
[28] 付锦燚, 张自嘉, 孙伟, 等. 改进YOLOv8的航拍图像小目标检测算法[J]. 计算机工程与应用, 2024, 60(6): 100-109.
FU J Y, ZHANG Z J, SUN W, et al. Improved YOLOv8 small target detection algorithm in aerial images[J]. Computer Engineering and Applications, 2024, 60(6): 100-109.
[29] GUO G, ZHANG Z. Road damage detection algorithm for improved YOLOv5[J]. Scientific Reports, 2022, 12(1): 15523.
[30] PHAM V, NGUYEN D, DONAN C. Road damage detection and classification with YOLOv7[C]//Proceedings of the 2022 IEEE International Conference on Big Data, 2022: 6416-6423.
[31] LV W Y, XU S L, ZHAO Y A, et al. DETRs beat YOLOs on real-time object detection[J]. arXiv:2304.08069, 2023.
[32] SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: visual explanations from deep networks via gradient-based localization[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, 2017: 22-29. |