[1] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.
[2] GIRSHICK R. Fast R- CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440-1448.
[3] REN S, HE K, GIRSHICK R, et al. Faster R- CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[4] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[5] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 7263-7271.
[6] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[7] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv:2004.10934, 2020.
[8] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Proceedings of the European Conference on Computer Vision, 2016: 21-37.
[9] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceedings of the IEEE International Conference on Computer Vision, 2017: 2980-2988.
[10] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]//Proceedings of European Conference on Computer Vision, 2014: 740-755.
[11] LIANG Z, SHAO J, ZHANG D, et al. Small object detection using deep feature pyramid networks[C]//Proceedings of Pacific Rim Conference on Multimedia, 2018: 554-564.
[12] 何湘杰, 宋晓宁. YOLOv4-Tiny的改进轻量级目标检测算法[J]. 计算机科学与探索, 2024, 18(1): 138-150.
HE X J, SONG X N. Improved YOLOv4-tiny lightweight target detection algorithm[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 138-150.
[13] AMUDHAN A N, SUDHEER A P. Lightweight and computationally faster hypermetropic Convolutional neural network for small size object detection[J]. Image and Vision Computing, 2022, 119: 104396.
[14] FU K, LI J, MA L, et al. Intrinsic relationship reasoning for small object detection[EB/OL]. (2020-09-02)[2024-01-28]. https://arxiv.org/abs/2009.00833.
[15] 王春梅, 刘欢. YOLOv8-VSC: 一种轻量级的带钢表面缺陷检测算法[J]. 计算机科学与探索, 2024, 18(1): 151-160.
WANG C M, LIU H. YOLOv8-VSC: lightweight algorithm for strip surface defect detection[J]. Journal of Frontiers of Computer Science and Technology, 2024, 18(1): 151-160.
[16] ZHOU J, ZHANG B, YUAN X, et al. YOLO-CIR: the network based on YOLO and ConvNeXt for infrared object detection[J]. Infrared Physics & Technology, 2023, 131: 104703.
[17] LENG J, MO M, ZHOU Y, et al. Pareto refocusing for drone-view object detection[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 33(3): 1320-1334.
[18] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 2117-2125.
[19] LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018: 8759-8768.
[20] 卞鹏程, 郑忠龙, 李明禄, 等. 基于注意力融合网络的视频超分辨率重建[J]. 计算机应用, 2021, 41(4): 1012-1019.
BIAN P C, ZHENG Z L, LI M L, et al. Attention fusion network based video super-resolution reconstruction[J]. Journal of Computer Applications, 2021, 41(4): 1012-1019.
[21] HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021: 13713-13722.
[22] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: 6000-6010.
[23] WANG J, CHEN K, XU R, et al. Carafe: content-aware reassembly of features[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, 2019: 3007-3016.
[24] LI X, HU X, YANG J. Spatial group-wise enhance: improving semantic feature learning in Convolutional networks[J]. arXiv:1905.09646, 2019.
[25] ZHENG Z, WANG P, LIU W, et al. Distance-IoU loss: faster and better learning for bounding box regression[C]//Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 12993-13000.
[26] ZHANG Y F, REN W, ZHANG Z, et al. Focal and efficient IOU loss for accurate bounding box regression[J]. Neurocomputing, 2022, 506: 146-157.
[27] TONG Z, CHEN Y, XU Z, et al. Wise-IoU: bounding box regression loss with dynamic focusing mechanism[J]. arXiv:2301.10051, 2023.
[28] GEVORGYAN Z. SIoU loss: more powerful learning for bounding box regression[J]. arXiv:2205.12740, 2022.
[29] SILIANG M, YONG X. MPDIoU: a loss for efficient and accurate bounding box regression[J]. arXiv:2307.07662, 2023.
[30] DU D, ZHU P, WEN L, et al. VisDrone-DET2019: the vision meets drone object detection in image challenge results[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, 2019: 213-226.
[31] JOCHER G, STOKEN A, BOROVEC J, et al. ultralytics/yolov5: v5[EB/OL]. (2022-11-22)[2024-01-28]. https://github.com/ultralytics/yolov5.
[32] XU S, WANG X, LV W, et al. PP-YOLOE: an evolved version of YOLO[J]. arXiv:2203.16250, 2022.
[33] ZHU X, LYU S, WANG X, et al. TPH-YOLOv5: improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 2778-2788.
[34] TANG W, SUN J, WANG G. Horizontal feature pyramid network for object detection in UAV images[C]//Proceedings of the 2021 China Automation Congress, 2021: 7746-7750.
[35] LIU S, ZHA J, SUN J, et al. EdgeYOLO: an edge-real-time object detector[J]. arXiv:2302.07483, 2023.
[36] RUKHOVICH D, SOFIIUK K, GALEEV D, et al. IterDet: iterative scheme for object detection in crowded environments[C]//Proceedings of the Structural, Syntactic, and Statistical Pattern Recognition, 2021: 344-354.
[37] ZHU X, SU W, LU L, et al. Deformable DETR: deformable transformers for end-to-end object detection[J]. arXiv:2010.04159, 2020. |