[1] 郭慧. 基于机器视觉的刨花板表面缺陷在线检测系统研究[D]. 北京: 中国林业科学研究院, 2019.
GUO H. Study on on-line detection system for surface defects of particleboard based on machine vision[D]. Beijing: Chinese Academy of Forestry, 2019.
[2] 郭慧, 盛振湘, 王霄, 等. 基于机器视觉的刨花板表面缺陷检测系统[J]. 木材工业, 2019, 33(3): 18-22.
GUO H, SHENG Z X, WANG X, et al. A system based on machine vision for detecting surface defects of particleboard[J]. China Wood Industry, 2019, 33(3): 18-22.
[3] 杨锋, 丁之桐, 邢蒙蒙, 等. 深度学习的目标检测算法改进综述[J]. 计算机工程与应用, 2023, 59(11): 1-15.
YANG F, DING Z T, XING M M, et al. Review of object detection algorithm improvement in deep learning[J]. Computer Engineering and Applications, 2023, 59(11): 1-15.
[4] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.
[5] GIRSHICK R. Fast R-CNN[C]//Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440-1448.
[6] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39(6): 1137-1149.
[7] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 779-788.
[8] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 7263-7271.
[9] REDMON J, FARHADI A. YOLOv3: an incremental improvement[J]. arXiv:1804.02767, 2018.
[10] BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[J]. arXiv:2004.10934, 2020.
[11] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[J]. arXiv:1512.02325, 2015.
[12] 彭煜, 肖书浩, 阮金华, 等. 基于Faster R-CNN 的刨花板表面缺陷检测研究[J]. 组合机床与自动化加工技术, 2020 (3): 91-94.
PENG Y, XIAO S H, RUAN J H, et al. Research on surface defect detection of particleboard based on Faster R-CNN[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2020(3): 91-94.
[13] ZHAO Z, GE Z, JIA M, et al. A particleboard surface defect detection method research based on the deep learning algorithm[J]. Sensors, 2022, 22(20): 7733.
[14] LI B, XU Z, BIAN E K, et al. Particleboard surface defect inspection based on data augmentation and attention mechanisms[C]//Proceedings of the 2022 27th International Conference on Automation and Computing, 2022: 1-6.
[15] ZHAO Z, YANG X, ZHOU Y, et al. Real-time detection of particleboard surface defects based on improved YOLOV5 target detection[J]. Scientific Reports, 2021, 11(1): 21777.
[16] 李科岑, 王晓强, 林浩, 等. 深度学习中的单阶段小目标检测方法综述[J]. 计算机科学与探索, 2022, 16(1): 41-58.
LI K C, WANG X Q, LIN H, et al. Survey of one-stage small object detection methods in deep learning[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(1): 41-58.
[17] LIU S, QI L, QIN H, et al. Path aggregation network for instance segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 8759-8768.
[18] FENG J, YI C. Lightweight detection network for arbitrary-oriented vehicles in UAV imagery via global attentive relation and multi-path fusion[J]. Drones, 2022, 6(5): 108.
[19] LIU S, HUANG D, WANG Y. Learning spatial fusion for single-shot object detection[J]. arXiv:1911.09516, 2019.
[20] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, 2017: 6000-6010.
[21] TANG Y, HAN K, GUO J, et al. GhostNetV2: enhance cheap operation with long-range attention[J]. arXiv:2211.
12905, 2022.
[22] HAN K, WANG Y, TIAN Q, et al. GhostNET: more features from cheap operations[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 1580-1589.
[23] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[J]. arXiv:2207.02696, 2022. |