[1] 李静静. 红外图像的目标检测与识别方法研究[D]. 沈阳: 沈阳理工大学, 2013.
LI J J. Research on target detection and recognition method of infrared image[D]. Shenyang: Shenyang University of Technology, 2013.
[2] 李伟林. 基于目标提取的红外与可见光图像融合算法[J]. 计算机仿真, 2014, 31(11): 358-361.
LI W L. Infrared and visible image fusion algorithm based on target extraction [J]. Computer Simulation, 2014, 31(11) : 358-361.
[3] HWANG S, PARK J, KIM N, et al. Multispectral pedestrian detection: benchmark dataset and baseline[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, 2015: 1037-1045.
[4] JIA X, ZHU C, LI M, et al. LLVIP: a visible-infrared paired dataset for low-light vision[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, 2021: 3496-3504.
[5] YANG D, LIU X, HE H, et al. Air-to-ground multimodal object detection algorithm based on feature association learning[J]. International Journal of Advanced Robotic Systems, 2019. DOI:10.1177/1729881419842995.
[6] GUAN D, CAO Y, YANG J, et al. Fusion of multispectral data through illumination-aware deep neural networks for pedestrian detection[J]. Information Fusion, 2019, 50: 148-157.
[7] ZHANG L, LIU Z, ZHANG S, et al. Cross-modality interactive attention network for multispectral pedestrian detection[J]. Information Fusion, 2019, 50: 20-29.
[8] SHARMA M, DHANARAJ M, KARNAM S, et al. YOLOrs: object detection in multimodal remote sensing imagery[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 14: 1497-1508.
[9] LIU J, FAN X, HUANG Z, et al. Target-aware dual adversarial learning and a multi-scenario multi-modality benchmark to fuse infrared and visible for object detection[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 5802-5811.
[10] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139-144.
[11] ATREY P K, HOSSAI M A, SADDIL A E, et al. Multimodal fusion for multimedia analysis: a survey[J]. Multimedia Systems, 2010, 16: 345-379.
[12] LIU J, ZHANG S, WANG S, et al. Multispectral deep neural networks for pedestrian detection[J]. arXiv:1611. 02644, 2016.
[13] LI C, SONG D, TONG R, et al. Multispectral pedestrian detection via simultaneous detection and segmentation[J]. arXiv:1808.04818, 2018.
[14] ZHANG H, FROMONT E, LEFEVRE S, et al. Guided attentive feature fusion for multispectral pedestrian detection[C]//Proceedings of the 2021 IEEE/CVF Winter Conference on Applications of Computer Vision, 2021: 72-80.
[15] ZHANG L, ZHU X, CHEN X, et al. Weakly aligned cross-modal learning for multispectral pedestrian detection[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, 2019: 5127-5137.
[16] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems 30, 2017.
[17] HUANG G, LIU Z, LAURENS V D M, et al. Densely connected convolutional networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, 2017: 4700-4708.
[18] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[19] SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, 2016: 2818-2826.
[20] SUN Y, CAO B, ZHU P, et al. Drone-based RGB-infrared cross-modality vehicle detection via uncertainty aware learning[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2022, 32(10): 6700-6713.
[21] REDMON J, FARHADI A. YOLOv3: An incremental improvement[J]. arXiv:1804.02767, 2018.
[22] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[J]. arXiv:2207.02696, 2022. |