[1] GOPAL S, YANG Y. Multilabel classification with meta-level features[C]//Proceedings of the 33rd International ACM SIGIR Conference on Research and Development in Information Retrieval, 2010: 315-322.
[2] CHEN G, YE D, XING Z, et al. Ensemble application of convolutional and recurrent neural networks for multi-label text categorization[C]//Proceedings of the 2017 International Joint Conference on Neural Networks, 2017: 2377-2383.
[3] NAM J, MENCIA E L, KIM H J, et al. Maximizing subset accuracy with recurrent neural networks in multi-label classification[C]//Advances in Neural Information Processing Systems 30, 2017.
[4] CHEN W, XU B. Semi-supervised Chinese word segmentation based on bilingual information[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, 2015: 1207-1216.
[5] QIAN Q, TIAN B, HUANG M, et al. Learning tag embeddings and tag-specific composition functions in recursive neural network[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), 2015: 1365-1374.
[6] BAI S, KOLTER J Z, KOLTUN V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[J]. arXiv:1803.01271, 2018.
[7] WANG G, LI C, WANG W, et al. Joint embedding of words and labels for text classification[J]. arXiv:1805.04174, 2018.
[8] LI Y, YANG Y. Label embedding for multi-label classification via dependence maximization[J]. Neural Processing Letters, 2020, 52: 1651-1674.
[9] BOUTELL M R, LUO J, SHEN X, et al. Learning multi-label scene classification[J]. Pattern Recognition, 2004, 37(9): 1757-1771.
[10] READ J, PFAHRINGER B, HOLMES G, et al. Classifier chains for multi-label classification[J]. Machine Learning, 2011, 85: 333-359.
[11] ZHANG M L, ZHOU Z H. ML-KNN: a lazy learning approach to multi-label learning[J]. Pattern Recognition, 2007, 40(7): 2038-2048.
[12] ELISSEEFF A, WESTON J. A kernel method for multi-labelled classification[C]//Advances in Neural Information Processing Systems 14, 2001.
[13] KALCHBRENNER N, GREFENSTETTE E, BLUNSOM P. A convolutional neural network for modelling sentences[J]. arXiv:1404.2188, 2014.
[14] KURATA G, XIANG B, ZHOU B. Improved neural network-based multi-label classification with better initialization leveraging label co-occurrence[C]//Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, 2016: 521-526.
[15] SABOUR S, FROSST N, HINTON G E. Dynamic routing between capsules[C]//Advances in Neural Information Processing Systems 30, 2017.
[16] 倪斌, 陆晓蕾, 童逸琦, 等. 胶囊神经网络在期刊文本分类中的应用[J]. 南京大学学报(自然科学版), 2021, 57(5): 750-756.
NI B, LU X L, TONG Y Q, et al. Automated journal text classification based on capsule neural network[J]. Journal of Nanjing University (Natural Science Edition), 2021, 57(5): 750-756.
[17] GUO L, ZHANG D, WANG L, et al. CRAN: a hybrid CNN-RNN attention-based model for text classification[C]//Proceedings of the 37th International Conference on Conceptual Modeling, Xi’an, Oct 22-25, 2018. Cham: Springer, 2018: 571-585.
[18] ZHOU P, SHI W, TIAN J, et al. Attention-based bidirectional long short-term memory networks for relation classification[C]//Proceedings of the 54th Annual Meeting of the Association For Computational Linguistics (Volume 2: Short papers), 2016: 207-212.
[19] YANG P, SUN X, LI W, et al. SGM: sequence generation model for multi-label classification[J]. arXiv:1806.04822, 2018.
[20] YOU R, ZHANG Z, WANG Z, et al. AttentionXML: label tree-based attention-aware deep model for high-performance extreme multi-label text classification[C]//Advances in Neural Information Processing Systems 32, 2019.
[21] XIAO L, HUANG X, CHEN B, et al. Label-specific document representation for multi-label text classification[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, 2019: 466-475.
[22] 冯海, 马甲林, 许林杰, 等. 融合标签嵌入和知识感知的多标签文本分类方法[J]. 南京大学学报 (自然科学), 2023, 59(2): 273-281.
FENG H, MA J L, XU L J, et al. Multi-label text classification method combining label embedding and knowledge-aware[J]. Journal of Nanjing University (Natural Science Edition), 2023, 59(2): 273-281.
[23] 杨春霞, 马文文, 陈启岗, 等. 融合CNN-SAM与GAT的多标签文本分类模型[J]. 计算机工程与应用, 2023, 59(5): 106-114.
YANG C X, MA W W, CHEN Q G, et al. Multi-label text classification model combining CNN-SAM and GAT[J]. Journal of Computer Engineering and Applications, 2023, 59(5): 106-114.
[24] KHANDELWAL U, LEVY O, JURAFSKY D, et al. Generalization through memorization: nearest neighbor language models[J]. arXiv:1911.00172, 2019.
[25] KHANDELWAL U, FAN A, JURAFSKY D, et al. Nearest neighbor machine translation[J]. arXiv:2010.00710, 2020.
[26] ZHENG X, ZHANG Z, GUO J, et al. Adaptive nearest neighbor machine translation[J]. arXiv:2105.13022, 2021.
[27] LEWIS D D, YANG Y, RUSSELL-ROSE T, et al. RCV1: a new benchmark collection for text categorization research[J]. Journal of Machine Learning Research, 2004, 5: 361-397.
[28] BLOM-HANSEN J. Studying power and influence in the European Union: exploiting the complexity of post-Lisbon legislation with EUR-Lex[J]. European Union Politics, 2019, 20(4): 692-706.
[29] DU C, CHEN Z, FENG F, et al. Explicit interaction model towards text classification[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence, 2019: 6359-6366.
[30] WANG R, RIDLEY R, QU W, et al. A novel reasoning mechanism for multi-label text classification[J]. Information Processing & Management, 2021, 58(2): 102441.
[31] MA Q, YUAN C, ZHOU W, et al. Label-specific dual graph neural network for multi-label text classification[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), 2021: 3855-3864.
[32] MARAGHEH H K, GHAREHCHOPOGH F S, MAJIDZADEH K, et al. A new hybrid based on long short-term memory network with spotted hyena optimization algorithm for multi-label text classification[J]. Mathematics, 2022, 10(3): 488. |