[1] LI M, ZHENG W, XIAO Y, et al. Exploring temporal and spatial features for next POI recommendation in LBSNs[J]. IEEE Access, 2021, 9: 35997-36007.
[2] DURAISAMY P, YUVARAJ S, NATARAJAN Y, et al. An overview of different types of recommendations systems-a survey[C]//Proceedings of 2023 4th International Conference on Innovative Trends in Information Technology, 2023: 1-5.
[3] AFSAR M M, CRUMP T, FAR B. Reinforcement learning based recommender systems: a survey[J]. ACM Computing Surveys, 2022, 55(7): 1-38.
[4] RAZA S, DING C. News recommender system: a review of recent progress, challenges, and opportunities[J]. Artificial Intelligence Review, 2022, 55(1): 749-800.
[5] WU L, HE X, WANG X, et al. A survey on accuracy-oriented neural recommendation: from collaborative filtering to information-rich recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(5): 4425-4445.
[6] TEOMAN H A, KARAGOZ P. Trust-aware location recommendation for user groups[J]. ACM SIGAPP Applied Computing Review, 2022, 22(3): 39-55.
[7] WU Y, LI K, ZHAO G, et al. Personalized long-and short-term preference learning for next POI recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(4): 1944-1957.
[8] DAI S, YU Y, FAN H, et al. Personalized POI recommendation: spatio-temporal representation learning with social tie[C]//Proceedings of the 26th International Conference on Database Systems for Advanced Applications, Taipei, China, 2021: 558-574.
[9] XUE F, HE X N, WANG X, et al. Deep item-based collaborative filtering for top-n recommendation[J]. ACM Transactions on Information Systems, 2019, 37(3): 1-25.
[10] CHIGOZIRIM A. An optimized item-based collaborative filtering algorithm[J]. Journal of Ambient Intelligence and Humanized Computing, 2021, 12(12): 10629-10636.
[11] WU S, ZHANG Y, GAO C, et al. GARG: anonymous recommendation of point-of-interest in mobile networks by graph convolution network[J]. Data Science and Engineering, 2020, 5: 433-447.
[12] GUO Y, SUN Z, HU L. A location and preference-aware recommender system using graph convolutional networks[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management, 2018: 1565-1568.
[13] ZHANG Y W, SONG W P, WANG J S, et al. Temporal graph attention transformer network for traffic forecasting[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(1): 524-533.
[14] YANG S, LIU J, ZHAO K. GETNext: trajectory flow map enhanced transformer for next POI recommendation[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2022: 1144-1153.
[15] HU X, XU J, WANG W, et al. A graph embedding based model for fine-grained POI recommendation[J]. Neurocomputing, 2021, 428: 376-384.
[16] SONG W, XIAO Z, WANG Y, et al. Session-based social recommendation via dynamic graph attention networks[C]//Proceedings of the 12th ACM International Conference on Web Search and Data Mining, 2019: 555-563.
[17] NIU Z, ZHONG G, YU H. A review on the attention mechanism of deep learning[J]. Neurocomputing, 2021, 452: 48-62.
[18] HERNANDEZ A, AMIGO J M. Attention mechanisms and their applications to complex systems[J]. Entropy, 2021, 23(3): 283.
[19] HUANG L, MA Y, WANG S, et al. An attention-based spatiotemporal LSTM network for next POI recommendation[J]. IEEE Transactions on Services Computing, 2021, 14(6): 1585-1597.
[20] WANG Y, ZHENG J, DU Y, et al. Traffic-GGNN: predicting traffic flow via attentional spatial-temporal gated graph neural networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(10): 18423-18432.
[21] TANG G, YANG L, ZHANG L, et al. An attention-based automatic vulnerability detection approach with GGNN[J]. International Journal of Machine Learning and Cybernetics, 2023, 14: 3113-3127.
[22] YING H, ZHUANG F, ZHANG F, et al. Sequential recommender system based on hierarchical attention network[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence, 2018: 3926-3932.
[23] WU S, TANG Y, ZHU Y, et al. Session-based recommendation with graph neural networks[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence, 2019: 346-353.
[24] XU C, ZHAO P, LIU Y, et al. Graph contextualized self-attention network for session-based recommendation[C]// Proceedings of the 28th International Joint Conference on Artificial Intelligence, 2019: 3940-3946.
[25] WANG D, WANG X, XIANG Z, et al. Attentive sequential model based on graph neural network for next POI recommendation[J]. World Wide Web, 2021, 24(6): 2161-2184.
[26] LI Q, XU X, LIU X, et al. An attention-based spatiotemporal GGNN for next POI recommendation[J]. IEEE Access, 2022, 10: 26471-26480. |