[1] 董召锋. 主流媒体“直播带货”现象探析[J]. 传媒, 2022(15): 79-81.
DONG Z F. Analysis of the phenomenon of “live streaming with sales” in mainstream media[J]. Media, 2022(15): 79-81.
[2] RIBEIRO V V, CRUZES D S, TRAVASSOS G H. Moderator factors of software security and performance verification[J]. Journal of Systems & Software, 2022, 184: 111137.
[3] CAMILLI M, JANES A, RUSSO B. Automated test-based learning and verification of performance models for microservices systems[J]. Journal of Systems and Software, 2022, 187: 111225.
[4] LIEBRENZ T, HERBER P, GLESNER S. Service-oriented decomposition and verification of hybrid system models using feature models and contracts[J]. Science of Computer Programming, 2021, 211: 102694.
[5] ALASMARI N, CALINESCU R, PATERSON C, et al. Quantitative verification with adaptive uncertainty reduction[J]. Journal of Systems and Software, 2022, 188: 111275.
[6] 孙瑞安, 张云华. 结合AdaBERT的TextCNN垃圾弹幕识别和过滤算法[J]. 智能计算机与应用, 2021, 11(4): 9-13.
SUN R A, ZHANG Y H. TextCNN based on AdaBERT barrage recognition and filtering algorithm[J]. Intelligent Computer and Applications, 2021, 11(4): 9-13.
[7] 明建华, 胡创, 周建政, 等. 针对直播弹幕的TextCNN过滤模型[J]. 计算机工程与应用, 2021, 57(3): 162-167.
MING J H, HU C, ZHOU J Z, et al. TextCNN based filtering model for barrage in live video broadcast[J]. Computer Engineering and Applications, 2021, 57(3): 162-167.
[8] 叶海燕. 基于情感计算与深度学习的弹幕文本敏感词识别方法[J]. 常州工学院学报, 2022, 35(3): 29-33.
YE H Y. Recognition method of sensitive words in bullet screen text based on emotional computing and deep learning[J]. Journal of Changzhou Institute of Technology, 2022, 35(3): 29-33.
[9] 黄立赫, 石映昕. 面向视频弹幕的网络舆情事件监测研究[J]. 情报杂志, 2022, 41(2): 146-154.
HUANG L H, SHI Y X. Research on network public opinion event monitoring for video bullet screen[J]. Journal of Intelligence, 2022, 41(2): 146-154.
[10] 金丹丹, 于干. 基于多维情感词典的B站视频弹幕倾向性分析[J]. 阜阳师范大学学报 (自然科学版), 2022, 39(2): 99-105.
JIN D D, YU G. Sentiment analysis of Bilibili video barrage based on multidimensional sentiment dictionary[J]. Journal of Fuyang Normal University (Natural Science), 2022, 39 (2): 99-105.
[11] TRINH T D, DANG L T A, TRUONG N N, et al. An improved CRNN for vietnamese identity card information recognition[J]. Computer Systems Science and Engineering, 2022, 40(2): 539-555.
[12] AL-SAFFAR A, AWANG S, AL-SAIAGH W, et al. A sequential handwriting recognition model based on a dynamically configurable CRNN[J]. Sensors, 2021, 21(21): 7306.
[13] LI M, MIAO Z J, XU W R. A CRNN-based attention-seq2seq model with fusion feature for automatic Labanotation generation[J]. Neurocomputing, 2021, 454: 430-440.
[14] LOKESHWAR S, VADIRAJA R M K, SUJAY KUMAR P S, et al. Analog document search using CRNN and keyphrase extraction[J]. International Journal of Image, Graphics and Signal Processing (IJIGSP), 2021, 13(2): 16-24.
[15] ZHAO X B, XIONG Z X, LI T Z, et al. CRNN with 2D attention for word recognition of english exams[C]//Twelfth International Conference on Graphics and Image Processing (ICGIP 2020), 2021.
[16] WANG X H, ZHANG X, LEI S Y, et al. A method of text detection and recognition from receipt images based on CRAFT and CRNN[C]//2020 4th International Conference on Machine Vision and Information Technology (CMVIT 2020), February, 20-22, 2020.
[17] 蔡肖, 陈志华, 盛斌. 基于移位窗口金字塔Transformer的遥感图像目标检测[J]. 计算机科学, 2023, 50(1): 105-113.
CAI X, CHEN Z H, SHENG B. SPT: swin pyramid Transformer for object detection of remote sensing[J]. Computer Science, 2023, 50(1): 105-113.
[18] 付苗苗, 邓淼磊, 张德贤. 基于深度学习和Transformer的目标检测算法[J]. 计算机工程与应用, 2023, 59(1): 37-48.
FU M M, DENG M L, ZHANG D X. Object detection algorithms based on deep learning and Transformer[J]. Computer Engineering and Applications, 2023, 59(1): 37-48.
[19] 周名杰. 基于ResNet与Transformer的离线手写数学公式识别[J]. 科技创新与应用, 2022, 12(21): 18-21.
ZHOU M J. Offline handwritten mathematical formula recognition based on resnet and Transformer[J]. Technology Innovation and Application, 2022, 12(21): 18-21.
[20] SUNDERMEYER M, SCHLüTER R, NEY H. LSTM neural networks for language modeling[C]//Interspeech, 2012.
[21] MOHAN A T, GAITONDE D V. A deep learning based approach to reduced order modeling for turbulent flow control using LSTM neural networks[J]. arXiv:1804.09269, 2018. |